Non-equilibrium systems

33
Non-equilibrium systems External flux self-organization d ~ characteristic size (D 1/2 ~ characteristic size electro convectio n …… ocean current s 10 -4 10 4

description

Non-equilibrium systems. External flux. d ~ characteristic size. ( D t  1/2 ~ characteristic size. self-organization. Desert vegetation patterns. Chemical Turing patterns (Swinney). Experimental cell. Labyrinthine pattern. Striped & hexagonal patterns. Animal coats & Turing patterns. - PowerPoint PPT Presentation

Transcript of Non-equilibrium systems

Page 1: Non-equilibrium systems

Non-equilibrium systems

External flux

self-organization

d ~ characteristic size

(D1/2~ characteristic size

electro convection …

ocean currents

10-4 104

Page 2: Non-equilibrium systems

Desert vegetation patterns

Page 3: Non-equilibrium systems

Chemical Turing patterns (Swinney)

Striped & hexagonal patterns Labyrinthine pattern

Experimental cell

Page 4: Non-equilibrium systems

Animal coats & Turing patterns

Simulated byRD equations

Zebra & leopard

Page 5: Non-equilibrium systems

Spiral patterns in range (CO oxidation on Pt, Imbihl & Ertl, 1995)

Polycrystalline surface 110 surface

STM image of Pt(110) – (1x2) showing the corrugated-iron structure; the inset shows a line scan across that structureK. Swamy, E. Bertel and I. Vilfan Surface Science, 425 L369 (1999)

Page 6: Non-equilibrium systems

Dewetting pattern J.Klein et al, PRL 86 4863 (2001)

I.Leizerson & S.G.Lipson

Page 7: Non-equilibrium systems

Patterns of crystal growth

The crystal growth sequence on an (001) cleavage plane in a BaSO4 solution

Pina et al, Nature 395, 483 (1998)

Page 8: Non-equilibrium systems

Colloidal assembly

G. Subramania et al, Phys. Rev. B 63 235111 (2001)

J.E.G. Wijnhoven and W.L. Vos, Science 281, 802 (1998)

Page 9: Non-equilibrium systems

Nanoscale deposition pattern

STM image of a periodic array of Fe islands nucleated on the dislocation network of a Cu bilayer on Pt(111)

Page 10: Non-equilibrium systems

Nanocluster arrays on interfaces

STM images of In nanoclusters on Si(111)

J.-L.Li et al, PRL 88 066101 (2002)

Page 11: Non-equilibrium systems

Molecular self-assembly on interfaces

Rows of pentacene on Cu(110) produced by a substrate-mediated repulsion

S.Lucas et al, PRL 88 028301 (2002)

Page 12: Non-equilibrium systems

Devil’s Causeway

Rayleigh–Bénard convection

Page 13: Non-equilibrium systems

Rayleigh–Bénard convection rolls,squares, hexagons, etc. Spiral defect chaos

Page 14: Non-equilibrium systems

Patterns of vibrating sand (Swinney)

Page 15: Non-equilibrium systems

Development of Turing pattern

Activator excited locally

Long-range inhibitor excited

Activator suppressed at neighboring locations

Periodic pattern starts to develop

Page 16: Non-equilibrium systems

activators & inhibitors

convection buoyancy heat transfer

optical cavity refractive index light intensity

solid film elastic stress surface tension

neuron membrane potential

ionic conductance

epidemics infectious agent immunity

Taylor column centrifugal force viscosity

Page 17: Non-equilibrium systems

Crystals & patternsEquilibrium systems Non-equilibrium systems

Short-range repulsionLong-range attraction

Short-range activatorLong-range inhibitor

Crystal Turing pattern

Evolution to equilibriumFrozen defects

Non-potential effects:Dynamic regimes are possible

Page 18: Non-equilibrium systems

Hexagonal & striped Turing patterns

0-hex -hexstripe

Page 19: Non-equilibrium systems

Double triplet: quasicrystal

Page 20: Non-equilibrium systems

Two-wavelength Turing patterns

L. Yang, M. Dolnik, A.M.Zhabotinsky, and I.R.Epstein, PRL 88 208303 (2002)

A two-layer system with different diffusivities

Page 21: Non-equilibrium systems

Two-wavelength superposition patterns

A two-layer system with strongly different diffusivities

L. Yang, M. Dolnik, A.M.Zhabotinsky, and I.R.Epstein, PRL 88 208303 (2002)

Page 22: Non-equilibrium systems

Resonant superlattice patterns

G. Dewel et al, 2001

Page 23: Non-equilibrium systems

Superlattice patterns: convection in vibrated layer

W. Pesch et al, PRL 85 4281 (2000)

Page 24: Non-equilibrium systems

Rayleigh–Bénard convection: complex patterns

Nucleation of hexagons in a defect core

Rolls, up- and down- hexagons Experiments of V.Steinberg

Page 25: Non-equilibrium systems

Two-frequency forced parametric waves

H.Arbell and J.Fineberg, PRE 65 036224 (2002)

Page 26: Non-equilibrium systems

Dynamics of spots in the plane

C.P.Schenk,M.Or-Guil,M.Bode,and H.-G.Purwins, Phys.Rev.Lett.78,3781 (1997)

Page 27: Non-equilibrium systems

Spirals and labyrinth patterns in BZ reaction

Action of incoherent light:

A spiral wave forms in the upper half of the same reactor, which is in the dark

A labyrinthine standing-wave pattern forms in the lower half of the reactor, which is illuminated with light pulsed at twice the natural frequency of the reaction

Page 28: Non-equilibrium systems

Chemical waves in the BZ reaction. Top: target patterns in a thin film of reagent (1.5 mm). Bottom: spiral waves in reagent similar to above except less acidic. Both sequences from left to right are at 60 s intervals. Reprinted with permission from: Winfree, A. T. Prog. Theor. Chem.

1978, 4, 1.

Page 29: Non-equilibrium systems

Spiral wave patterns in CGLE

Frustrated pattern

Turbulent pattern

P. G. Kevrekidis, A. R. Bishop, and K. Ø. Rasmussen Phys. Rev. E 65, 016122 (2002)

Page 30: Non-equilibrium systems

Spiral wave and its break-up

M. Baer, M. OrGuil, PRL 82 1160 (1999)

Page 31: Non-equilibrium systems

Instability of a reaction front

Page 32: Non-equilibrium systems

Boundary dynamics: cn= cn(v) + f() (Meron et al)

Labirynthine pattern develops from a single stripe when the inhibitor is fast

Spiral turbulence develops from a single stripe when the inhibitor is slow

Page 33: Non-equilibrium systems

3D instabilities in surface growth

Snowflakes

Dendritic patterns in electrodeposition

Bacterial colony

Multiple-exposure photograph of a dendrite advancing downwards Huang and Glicksman Acta Metall.29 717 (1981)