No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory....

58
The realm of operads No´ emie C. Combe MPI MiS Wednesday 24/03 at 17:00 No´ emie C. Combe MPI MiS The realm of operads

Transcript of No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory....

Page 1: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

The realm of operads

Noemie C. CombeMPI MiS

Wednesday 24/03 at 17:00

Noemie C. Combe MPI MiS

The realm of operads

Page 2: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Where do operads appear?

I Situations in which you have an operation with multipleentries.

Figure: Higher operads, higher categories,T. Leinster

Noemie C. Combe MPI MiS

The realm of operads

Page 3: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Noemie C. Combe MPI MiS

The realm of operads

Page 4: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

I Operads allow to describe and understand operations withmultiple entries (inputs), acting on certain algebras,topological spaces, or geometric manifolds.

I Define higher invariants in geometry and topology.

Noemie C. Combe MPI MiS

The realm of operads

Page 5: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

I Operads allow to describe and understand operations withmultiple entries (inputs), acting on certain algebras,topological spaces, or geometric manifolds.

I Define higher invariants in geometry and topology.

Noemie C. Combe MPI MiS

The realm of operads

Page 6: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

The realm of operads

Algebra

Topology & Geometry Maths-Phys

Operads

Noemie C. Combe MPI MiS

The realm of operads

Page 7: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

An operad P consists of:

a collection {P(n)}n≥1 of k-vector spaces (or abstract n- ary

operations for each n),

+composition rule

Noemie C. Combe MPI MiS

The realm of operads

Page 8: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

We can think of an n-ary operation as a little black box with nwires coming in and one wire coming out:

Inputs

Output(s)

Noemie C. Combe MPI MiS

The realm of operads

Page 9: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Shrink the black box to a point, you obtain this graph \:

Noemie C. Combe MPI MiS

The realm of operads

Page 10: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

About trees

Tree T - non-empty, connected oriented graph without loops(oriented or not).Property: For each vertex, there is at least one incomingedge and exactly one outgoing edge.

External edges: edges of the tree, bounded by a vertex at oneend only.

Internal edges: All other edges (i.e. those bounded by verticesat both ends)

Noemie C. Combe MPI MiS

The realm of operads

Page 11: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Any tree has:- a unique outgoing external edge, called the output (orthe root) of the tree,- several ingoing external edges, called inputs or leaves ofthe tree.

Similarly, the edges going in and out of a vertex v of a tree willbe referred to as inputs and outputs at v.

Noemie C. Combe MPI MiS

The realm of operads

Page 12: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Roughly speaking, an operad is a kind of super powerfulalgebra (a “higher structure algebra”).

Being a higher structure, allows to classify and organise wellknown algebras such as Lie algebras, commutative algebras, ortopological spaces, etc ....

Noemie C. Combe MPI MiS

The realm of operads

Page 13: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operads behave a bit like a DAW

A digital audio workstation (DAW) is an electronic device usedfor recording, editing and producing audio files.

Noemie C. Combe MPI MiS

The realm of operads

Page 14: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

I Inputs:space P(i1) = micro 1,space P(i2) = micro 2,...space P(in)= micro n.

I composition operation = (Mixing console)

I output: audio file 1.

Noemie C. Combe MPI MiS

The realm of operads

Page 15: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

I Inputs:space P(i1) = micro 1,space P(i2) = micro 2,...space P(in)= micro n.

I composition operation = (Mixing console)

I output: audio file 1.

Noemie C. Combe MPI MiS

The realm of operads

Page 16: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

I Inputs:space P(i1) = micro 1,space P(i2) = micro 2,...space P(in)= micro n.

I composition operation = (Mixing console)

I output: audio file 1.

Noemie C. Combe MPI MiS

The realm of operads

Page 17: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Micros

Audio files

Mixing console

Figure:

Noemie C. Combe MPI MiS

The realm of operads

Page 18: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operads are everywhere

Operads can be applied everywhere ...... as long as you have a

symmetric monoidal category.

Noemie C. Combe MPI MiS

The realm of operads

Page 19: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Category

A category C consists of data that satisfy certain properties.

Category

Objects: x,y,z,...

Morphisms: f : x → y

Composition: (f : x → y , g : y → z)⇒ g ◦ f : x → z

Properties

Identity morphism: Id : x → x

Associativity: (h ◦ g) ◦ f = h ◦ (g ◦ f )

Noemie C. Combe MPI MiS

The realm of operads

Page 20: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Example : category of sets Set

Objects: sets ∅, {1}, {2}, ..., {1, 2, ..., n}Morphisms of sets: {1, 2, ..., n} → {1, 2, ...,m}I epimorphisms in Set are the surjective maps,

I monomorphisms are the injective maps,

I isomorphisms are the bijective maps.

Noemie C. Combe MPI MiS

The realm of operads

Page 21: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Symmetric monoidal category

Ingredients:

1. Category C,

2. a tensor product ⊗ : C × C → C,

3. a unit object 1 ∈ C,

4. natural isomorphisms (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z )

5. coherence axioms,

6. and symmetry isomorphisms cX ,Y : X ⊗ Y → Y ⊗ X suchthat cX ,Y cY ,X = id .

Noemie C. Combe MPI MiS

The realm of operads

Page 22: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Symmetric monoidal category

Ingredients:

1. Category C,

2. a tensor product ⊗ : C × C → C,

3. a unit object 1 ∈ C,

4. natural isomorphisms (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z )

5. coherence axioms,

6. and symmetry isomorphisms cX ,Y : X ⊗ Y → Y ⊗ X suchthat cX ,Y cY ,X = id .

Noemie C. Combe MPI MiS

The realm of operads

Page 23: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Symmetric monoidal category

Ingredients:

1. Category C,

2. a tensor product ⊗ : C × C → C,

3. a unit object 1 ∈ C,

4. natural isomorphisms (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z )

5. coherence axioms,

6. and symmetry isomorphisms cX ,Y : X ⊗ Y → Y ⊗ X suchthat cX ,Y cY ,X = id .

Noemie C. Combe MPI MiS

The realm of operads

Page 24: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Symmetric monoidal category

Ingredients:

1. Category C,

2. a tensor product ⊗ : C × C → C,

3. a unit object 1 ∈ C,

4. natural isomorphisms (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z )

5. coherence axioms,

6. and symmetry isomorphisms cX ,Y : X ⊗ Y → Y ⊗ X suchthat cX ,Y cY ,X = id .

Noemie C. Combe MPI MiS

The realm of operads

Page 25: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Symmetric monoidal category

Ingredients:

1. Category C,

2. a tensor product ⊗ : C × C → C,

3. a unit object 1 ∈ C,

4. natural isomorphisms (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z )

5. coherence axioms,

6. and symmetry isomorphisms cX ,Y : X ⊗ Y → Y ⊗ X suchthat cX ,Y cY ,X = id .

Noemie C. Combe MPI MiS

The realm of operads

Page 26: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Symmetric monoidal category

Ingredients:

1. Category C,

2. a tensor product ⊗ : C × C → C,

3. a unit object 1 ∈ C,

4. natural isomorphisms (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z )

5. coherence axioms,

6. and symmetry isomorphisms cX ,Y : X ⊗ Y → Y ⊗ X suchthat cX ,Y cY ,X = id .

Noemie C. Combe MPI MiS

The realm of operads

Page 27: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Baking cake example

Figure: Spivak, 7sketches

Noemie C. Combe MPI MiS

The realm of operads

Page 28: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

IllustrationCategory C: ’cake ingredients’.Ob(C): X = sugar, Y = white, W = butter, V = lemon,K =yolk.

Symmetry: M = Meringue = (sugar ⊗ white)= (X ⊗ Y )

( X︸︷︷︸sugar

⊗ Y︸︷︷︸white

) = ( Y︸︷︷︸white

⊗ X︸︷︷︸sugar

) = M︸︷︷︸meringue

.

Associativity:

Lemon filling = L = (sugar ⊗ butter ⊗ lemon ⊗ yolk)

L = ( X︸︷︷︸sugar

⊗ W︸︷︷︸butter

)⊗ V︸︷︷︸lemon

⊗K = X︸︷︷︸sugar

⊗( W︸︷︷︸butter

⊗ V︸︷︷︸lemon

)⊗ K

Noemie C. Combe MPI MiS

The realm of operads

Page 29: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Mathematically speakingI An operad P consists of a collection of objects {P(n)}n≥1

(in C), such that the symmetric group Sr acts on P(r)

I composition maps:

◦i : P(k)× P(l)→ P(k + l − 1),

I a unit morphism η : 1→ P(1)

I satisfying some axioms (equivariance, unit, associativity).

Noemie C. Combe MPI MiS

The realm of operads

Page 30: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Mathematically speakingI An operad P consists of a collection of objects {P(n)}n≥1

(in C), such that the symmetric group Sr acts on P(r)

I composition maps:

◦i : P(k)× P(l)→ P(k + l − 1),

I a unit morphism η : 1→ P(1)

I satisfying some axioms (equivariance, unit, associativity).

Noemie C. Combe MPI MiS

The realm of operads

Page 31: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Mathematically speakingI An operad P consists of a collection of objects {P(n)}n≥1

(in C), such that the symmetric group Sr acts on P(r)

I composition maps:

◦i : P(k)× P(l)→ P(k + l − 1),

I a unit morphism η : 1→ P(1)

I satisfying some axioms (equivariance, unit, associativity).

Noemie C. Combe MPI MiS

The realm of operads

Page 32: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Mathematically speakingI An operad P consists of a collection of objects {P(n)}n≥1

(in C), such that the symmetric group Sr acts on P(r)

I composition maps:

◦i : P(k)× P(l)→ P(k + l − 1),

I a unit morphism η : 1→ P(1)

I satisfying some axioms (equivariance, unit, associativity).

Noemie C. Combe MPI MiS

The realm of operads

Page 33: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Historical point

• 70’s: algebraic topology; homotopy theory.• 90’s: Algebra (Koszul duality), Geometry (moduli spaces ofcurves), Mathematical Physics (TQFT), due to the impulse ofY. Manin and M. Kontsevitch.• Nowadays: operads apply to algebraic topology, differentialgeometry, non-commutative geometry, mathematical physics,probabilities, combinatorics, algebraic combinatorics, highercategories and logic.

Noemie C. Combe MPI MiS

The realm of operads

Page 34: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Panorama: types of operads

• Algebraic operads, ruling associative algebras (Wednesday)

• Topological operads, (little discs operad), loop space

• Geometric operads, coding Gromov–Witten invariants.

Noemie C. Combe MPI MiS

The realm of operads

Page 35: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Example of operads:

little disc operad

Take (C,⊗): symmetric monoidal category of topologicalspaces, where ⊗ is the cartesian product.

I Let D(q,R) be a disc of center q and radius R < 1 in theEuclidean space Rn.

I D is the unit disc (q = (0, ..., 0) and R = 1).

Noemie C. Combe MPI MiS

The realm of operads

Page 36: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Example of operads:

little disc operad

Take (C,⊗): symmetric monoidal category of topologicalspaces, where ⊗ is the cartesian product.

I Let D(q,R) be a disc of center q and radius R < 1 in theEuclidean space Rn.

I D is the unit disc (q = (0, ..., 0) and R = 1).

Noemie C. Combe MPI MiS

The realm of operads

Page 37: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Little disc operadThe little n-discs D(q,R) are contained in D i.e. there existsan embedding c : D→ D such that c(v) = Rv + q. So, wehave that D(q,R) = c(D).

Figure: Fresse, Little disc operad, graph complexesNoemie C. Combe MPI MiS

The realm of operads

Page 38: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

The Operad of little n-discs is a structure defined by:

I the collection of spaces Dn = {Dn(r), r ∈ N}, where

Dn(r) consists of r -tuples of little n-discs {c1, ..., cr} suchthat int(ci) ∩ int(cj) = ∅, for all pairs i 6= j .

I Composition operations:

◦i : Dn(k)× Dn(l)→ Dn(k + l − 1)

for all k , l ≥ 0 and i ∈ {1, 2, ..., k}.

Noemie C. Combe MPI MiS

The realm of operads

Page 39: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

The Operad of little n-discs is a structure defined by:

I the collection of spaces Dn = {Dn(r), r ∈ N}, where

Dn(r) consists of r -tuples of little n-discs {c1, ..., cr} suchthat int(ci) ∩ int(cj) = ∅, for all pairs i 6= j .

I Composition operations:

◦i : Dn(k)× Dn(l)→ Dn(k + l − 1)

for all k , l ≥ 0 and i ∈ {1, 2, ..., k}.

Noemie C. Combe MPI MiS

The realm of operads

Page 40: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Example

Let n = 2, and suppose we have D2(3) composed with D2(2)at i = 3:

◦3 : D2(3)× D2(2)→ D2(4)

You have:

Figure: Fresse, Little disc operad, graph complexes

Noemie C. Combe MPI MiS

The realm of operads

Page 41: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Topological operads

Little disc operad ←→ configuration spaces ←→ Modulispaces of curves M0,n.

Configuration space for genus 0 Riemann surface:Conf (0, n) = {(x1, ..., xn) ∈ Pn|xi 6= xj}.

Intermediate step: Compactification i.e. Conf (0, n).

Noemie C. Combe MPI MiS

The realm of operads

Page 42: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Compactification

Figure: Devadoss, Tesselations of the moduli spaces and mosaicoperad

Noemie C. Combe MPI MiS

The realm of operads

Page 43: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Gauss - skizze operad

I Configuration space of npoints in C

I Conf (0, n)

I n-tuple (x1, ..., xn) ∈ Cn

I Space of degree npolynomials P in C

I {zn+an−2zn−2 +· · ·+a0}I roots of P

————————————————

Idea: Assign a graph to each n-tuple (x1, ..., xn) ∈ Cn, given byP−1(R ∪ ıR) (Gauss skizze).

Noemie C. Combe MPI MiS

The realm of operads

Page 44: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Gauss - skizze operad

Consider Conf (0, 3). We want to compose with a Conf (0, 2)object at a given point i .

Figure: Degree 3 polynomial:z3 + 1.8 ∗ z + 1 + i

Figure: Degree 2 polynomials

Noemie C. Combe MPI MiS

The realm of operads

Page 45: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Choose a given input of Conf (0, 3) (represented as a a root ofthe degree 3 polynomial). We compose with Conf (0, 2),(which can be one of the pictures above in blue column). Forexample:

• We need the singular part of Conf (0, n)!

Noemie C. Combe MPI MiS

The realm of operads

Page 46: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

For more see my preprint Gauss Skizze-Operad andmonodromy on semisimple Frobenius manifolds, N.C. CombeMPIM 45-19 preprints.

Noemie C. Combe MPI MiS

The realm of operads

Page 47: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

M0,n

Deligne–Mumford

Fulton--MacPherson

Axelrod–Singer

Kapranov

Getzler–Jones

Noemie C. Combe MPI MiS

The realm of operads

Page 48: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operadic zoo

Algebras:

I Operad

I cyclic operads

I k-modular

I dioperads

I properads

Graphs

I Rooted trees

I treesdirected connected genus0 graphs, all generagraphs,...

I connected + orientation+ on set of edges +genus marking

I connected directedgraphs w/o directedloops or parallel edges

I connected directedgraphs w/o directedloops

Noemie C. Combe MPI MiS

The realm of operads

Page 49: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operadic zoo

Algebras:

I Operad

I cyclic operads

I k-modular

I dioperads

I properads

Graphs

I Rooted trees

I treesdirected connected genus0 graphs, all generagraphs,...

I connected + orientation+ on set of edges +genus marking

I connected directedgraphs w/o directedloops or parallel edges

I connected directedgraphs w/o directedloops

Noemie C. Combe MPI MiS

The realm of operads

Page 50: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operadic zoo

Algebras:

I Operad

I cyclic operads

I k-modular

I dioperads

I properads

Graphs

I Rooted trees

I treesdirected connected genus0 graphs, all generagraphs,...

I connected + orientation+ on set of edges +genus marking

I connected directedgraphs w/o directedloops or parallel edges

I connected directedgraphs w/o directedloops

Noemie C. Combe MPI MiS

The realm of operads

Page 51: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operadic zoo

Algebras:

I Operad

I cyclic operads

I k-modular

I dioperads

I properads

Graphs

I Rooted trees

I treesdirected connected genus0 graphs, all generagraphs,...

I connected + orientation+ on set of edges +genus marking

I connected directedgraphs w/o directedloops or parallel edges

I connected directedgraphs w/o directedloops

Noemie C. Combe MPI MiS

The realm of operads

Page 52: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operadic zoo

Algebras:

I Operad

I cyclic operads

I k-modular

I dioperads

I properads

Graphs

I Rooted trees

I treesdirected connected genus0 graphs, all generagraphs,...

I connected + orientation+ on set of edges +genus marking

I connected directedgraphs w/o directedloops or parallel edges

I connected directedgraphs w/o directedloops

Noemie C. Combe MPI MiS

The realm of operads

Page 53: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operadic zoo:

What kind of operadic creatures can we find?

Modular operad. No distinction between inputs andoutputs.

EXAMPLE. The Deligne-Mumford moduli spaces of stablecurves of genus g with n + 1 points. The operadic compositemaps are defined by intersecting curves along their markedpoints.

(For more about the following objects, see reference : B.Vallette, Algebra + Homotopy = operad)

Noemie C. Combe MPI MiS

The realm of operads

Page 54: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operadic zoo

Properad. Several inputs and several outputs. But, incontrast to modular operads, where inputs and outputs areconfused, one keeps track of the inputs and the outputs.

EXAMPLE. Riemann surfaces, i.e. smooth compact complexcurves, with parametrized holomorphic holes form a properad.

Noemie C. Combe MPI MiS

The realm of operads

Page 55: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Operadic zoo

Prop. Like a properad, but where one can also compose alongnon-necessarily connected graphs. This is the operadic notionwhich was introduced first, by Saunders MacLane as asymmetric monoidal category C.

EXAMPLE. The categories of cobordism, where the objectsare the d-dimensional manifolds and where the morphisms arethe (d + 1)-dimensional manifolds with d-dimension boundary,form a prop.

Noemie C. Combe MPI MiS

The realm of operads

Page 56: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

...

Noemie C. Combe MPI MiS

The realm of operads

Page 57: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

Conclusion

I Operads are universal and interfere in almost each domainof mathematics,

I appear in applied mathematics

I mathematical physics.

Operads are very flexible : many different ways of definingthem using the language which fits the most.

Noemie C. Combe MPI MiS

The realm of operads

Page 58: No emie C. Combe MPI MiS Wednesday 24/03 at 17:00 · 70’s: algebraic topology; homotopy theory. 90’s: Algebra (Koszul duality), Geometry (moduli spaces of curves), Mathematical

If you enjoyed this introduction to operads and want to knowmore:

Reading group:Tomorrow 25/03, at 17:00

Organisers: Noemie Combe & Joscha Diehl

Tomorrow: introduction to algebraic operads.

Noemie C. Combe MPI MiS

The realm of operads