NMR investigations of Leggett- Garg Inequality

43
NMR investigations of Leggett-Garg Inequality V. Athalye 2 , H. Katiyar 1 , Soumya S. Roy 1 , Abhishek Shukla 1 , R. Koteswara Rao 3 T. S. Mahesh 1 1 IISER-Pune, 2 Cummins College, Pune, 3 IISc, Bangalore Acknowledgements: Usha Devi 1 , K. Rajagopal 2 , Anil Kumar 3 , and G. C. Knee 4 1 Bangalore University, 2 HRI & Inspire Inst., Virginia, USA, 3 IISc, Bangalore 4 University of Oxford

description

NMR investigations of Leggett- Garg Inequality. V. Athalye 2 , H. Katiyar 1 , Soumya S. Roy 1 , Abhishek Shukla 1 , R. Koteswara Rao 3 T. S. Mahesh 1 1 IISER-Pune, 2 Cummins College, Pune , 3 IISc, Bangalore. Acknowledgements: . - PowerPoint PPT Presentation

Transcript of NMR investigations of Leggett- Garg Inequality

Page 1: NMR investigations of  Leggett- Garg  Inequality

NMR investigations of Leggett-Garg Inequality

V. Athalye2, H. Katiyar1, Soumya S. Roy1, Abhishek Shukla1, R. Koteswara Rao3

T. S. Mahesh1

1IISER-Pune, 2Cummins College, Pune,

3IISc, Bangalore

Acknowledgements:

Usha Devi1, K. Rajagopal2, Anil Kumar3, and G. C. Knee4

1 Bangalore University,2 HRI & Inspire Inst., Virginia, USA,

3 IISc, Bangalore4 University of Oxford

Page 2: NMR investigations of  Leggett- Garg  Inequality

Plan

• NMR as a quantum testbed

• Correlation Leggett-Garg Inequality

• Entropic Leggett-Garg Inequality

• Summary

Athalye, Roy, TSM, PRL 2011.

Hemant, Abhishek, Koteswar, TSM,arXiv: 1210.1970 [quant-ph]

Page 3: NMR investigations of  Leggett- Garg  Inequality

ħgB0

Many nuclei have ‘spin angular momentum’ and ‘magnetic moment’

Coherent Superposition

a|0 + b |1 |0 |1

B0

Nuclear Spins

Page 4: NMR investigations of  Leggett- Garg  Inequality

Spectrometer Sample:1015 spins

RF coilPulse/Detect

Superconductingcoil

H0

H1cos(wt)

~

Nuclear Magnetic Resonance (NMR)

Page 5: NMR investigations of  Leggett- Garg  Inequality

1015 spins

Pseudopure State

p1

p0

= 1

~ 105 at 300 K, 12 T

E

kT =

B0 |0

|1 p1

p0

Page 6: NMR investigations of  Leggett- Garg  Inequality

1015 spins

Pseudopure State

p1

p0

= 1

~ 105 at 300 K, 12 T

E

kT =

B0 |0

|1 p1

p0

pseudopure

=(1- )1/2+|00|

Page 7: NMR investigations of  Leggett- Garg  Inequality

1015 spins

Pseudopure State

p1

p0

= 1

~ 105 at 300 K, 12 T

E

kT =

B0 |0

|1 p1

p0

RF

pseudopure

=(1- )1/2+|++| =(1- )1/2+|00|

Page 8: NMR investigations of  Leggett- Garg  Inequality

2-qubit register

=(1- )1/2+|00|

> 1/3UW

NonseparableState

Resources

SeparableState

1/3UW

• parahydrogens (Jones &Anwar, PRA 2004)

• q-transducer (Cory et al, PRA 2007)

Resource:Entanglement

Resource:Discord(in units of 2)

Hemant, Roy, TSM, A. Patel, PRA2012

• pseudopure states

• Cory 1997• Chuang 1997

• ~ pure states

Page 9: NMR investigations of  Leggett- Garg  Inequality

7-qubit NMR register

NMR systems useful?Pseudopure|0000000

Preparation

(scalability?)

Shor’salgorithm

15 = 3 x 5 Chuang, Nature 2002

No entanglementfinite discord

Open question:

Is discord sufficient resource for quantum computation ?

Page 10: NMR investigations of  Leggett- Garg  Inequality

NMR system as a quantum testbed• Geometric Phases (Suter, 1988)

• Electromagnetically Induced Transparency (Murali, 2004)

• Contextuality (Laflamme, 2010)

• Delayed choice (Roy, 2012)

• Born’s rule (Laflamme, 2012)

Why NMR?

• Long life-times of quantum coherence

• Unmatched control on spin dynamics

Page 11: NMR investigations of  Leggett- Garg  Inequality

Correlation LGI(CLGI)

Page 12: NMR investigations of  Leggett- Garg  Inequality

Macrorealism“A macroscopic object, which has available to it two or more macroscopically distinct states, is at any given time in a definite one of those states.”

Non-invasive measurability“It is possible in principle to determine which of these states the system is in without any effect on the state itself or on the subsequent system dynamics.”

A. J. Leggett and A. Garg, PRL 54, 857 (1985)

Leggett-Garg (1985) Sir Anthony James LeggettUni. of Illinois at UC

Prof. Anupam GargNorthwestern University, Chicago

How to distinguishQuantum behaviorFrom Classical ?

Page 13: NMR investigations of  Leggett- Garg  Inequality

• N. Lambert et al, PRB 2001

• J.-S. Xu et al., Sci. Rep 2011

• Palacios-Laloy et al., Nature Phys. 2010

• M. E. Goggin et al., PNAS USA 2011

• J. Dressel et al., PRL 2011

• M. Souza et al, NJP 2011

• Roy et al, PRL 2011

• G. C. Knee et al., Nat. Commun. 2012

• C. Emary et al, PRB 2012

• Y. Suzuki et al, NJP 2012

• Hemant et al, arXiv 2012

LGI studies in various systems

Page 14: NMR investigations of  Leggett- Garg  Inequality

Consider a system with a dynamic dichotomic observable Q(t)

Dichotomic : Q(t) = 1 at any given time

timeQ1 Q2 Q3

t2 t3 . . .

. . .

Leggett-Garg (1985)

A. J. Leggett and A. Garg, PRL 54, 857 (1985)

PhD Thesis, Johannes Kofler, 2004

t1

Page 15: NMR investigations of  Leggett- Garg  Inequality

timeQ1

t = 0

Q2 Q3

t . . .

. . .

2t

Two-Time Correlation Coefficient (TTCC)

EnsembleTime ensemble (sequential)

Spatial ensemble (parallel)

Temporal correlation: Cij = Qi Qj = Qi(r)

Qj(r)N

1

r = 1

N

1 Cij 1 Cij = 1 Perfectly correlated

Cij =1 Perfectly anti-correlated

Cij = 0 No correlation

= pij+(+1) + pij

(1)

r over an ensemble

Page 16: NMR investigations of  Leggett- Garg  Inequality

LG string with 3 measurements

K3 = C12 + C23 C13

K3 = Q1Q2 + Q2Q3 Q1Q3

3 K3 1

Leggett-Garg Inequality (LGI)

K3

time

Macrorealism(classical)

timeQ1

t = 0

Q2 Q3

t 2t

Q1 Q2 Q3 Q1Q2+Q2Q3-Q1Q3

1 1 1 11 1 -1 11 -1 1 -31 -1 -1 1-1 1 1 1-1 1 -1 -3-1 -1 1 1-1 -1 -1 1

Page 17: NMR investigations of  Leggett- Garg  Inequality

TTCC of a spin ½ particle

TimeQ1

t = 0

Q2 Q3

t 2t

Consider :A spin ½ particle

Hamiltonian : H = ½ wz

Maximally mixed initial State : 0 = ½ 1 Dynamic observable: x eigenvalues 1 (Dichotomic )

C12 = x(0)x(t) = x e-iHt x eiHt

= x [xcos(wt) + ysin(wt)]

C12 = cos(wt)

Similarly, C23 = cos(wt)

and C13 = cos(2wt)PhD Thesis, Johannes Kofler, 2004

Page 18: NMR investigations of  Leggett- Garg  Inequality

Quantum States Violate LGI: K3 with Spin ½

timeQ1

t = 0

Q2 Q3

t 2t

K3 = C12 + C23 C13 = 2cos(wt) cos(2wt)

K3

wt2 3

Macrorealism(classical)

Quantum !!

40

No violation !

(/3,1.5)

Maxima (1.5) @cos(wt) =1/2

Page 19: NMR investigations of  Leggett- Garg  Inequality

K4 = C12 + C23 + C34 C14 = 3cos(wt) cos(3wt)

Quantum States Violate LGI: K4 with Spin ½

Extrema (22) @cos(2wt) =0

K4 Macrorealism(classical)

Quantum !!

wt2 3 40

(/4,22)

(3/4,22)

time

Q1

t = 0

Q2 Q3

t 2t 3t

Q4

Page 20: NMR investigations of  Leggett- Garg  Inequality

Evaluating K3

K3 = C12 + C23 C13

t = 0 t 2t

x

x

x

x

x

x

time

ENSEMBLE x(0)x(t) = C12

x(t)x(2t) = C23

x(0)x(2t) = C13

ENSEMBLE

ENSEMBLE

0

Hamiltonian : H = ½ wz

0

0

Page 21: NMR investigations of  Leggett- Garg  Inequality

Evaluating K4

K4 = C12 + C23 + C34 C14

t = 0 t 2t

x

x

x

x

x

time

x

↗x

x

3t

ENSEMBLE x(0)x(t) = C12

x(t)x(2t) = C23

x(0)x(3t) = C14

x(2t)x(3t) = C34

Joint Expectation Value

ENSEMBLE

ENSEMBLE

ENSEMBLE

Hamiltonian : H = ½ wz

0

0

0

0

Page 22: NMR investigations of  Leggett- Garg  Inequality

Moussa Protocol

O. Moussa et al, PRL,104, 160501 (2010)

Target qubit (T)

Probe qubit (P)

A B

x

↗|+

AB

Joint Expectation Value

A↗

B↗

ABTarget qubit (T)

Dichotomicobservables

Page 23: NMR investigations of  Leggett- Garg  Inequality

Sample13CHCl3

(in DMSO)

Target: 13C Probe: 1H

Resonance Offset: 100 Hz 0 Hz

T1 (IR) 5.5 s 4.1 s

T2 (CPMG) 0.8 s 4.0 s

V. Athalye, S. S. Roy, and TSM, Phys. Rev. Lett. 107, 130402 (2011).

Page 24: NMR investigations of  Leggett- Garg  Inequality

Experiment – pulse sequence

1H

13C

= Ax Aref

Ax(t)+i Ay(t)

Ax(t) = cos(2tij) Ay(t) = sin(2tij)

Ax(t) x(t)

=

0

V. Athalye, S. S. Roy, and TSM, Phys. Rev. Lett. 107, 130402 (2011).

1/2

90x

PFG

Page 25: NMR investigations of  Leggett- Garg  Inequality

wt

Experiment – Evaluating K3

timeQ1

t = 0

Q2 Q3

t 2t

K3 = C12 + C23 C13

= 2cos(wt) cos(2wt)

(w = 2100)

Error estimate: 0.05

V. Athalye, S. S. Roy, and TSM, Phys. Rev. Lett. 107, 130402 (2011).

Page 26: NMR investigations of  Leggett- Garg  Inequality

Experiment – Evaluating K3

50 100 150 200 250 300 t (ms)

LGI violated !!(Quantum)

LGI satisfied

Decay constant of K3 = 288 ms

165 ms

V. Athalye, S. S. Roy, and TSM,Phys. Rev. Lett. 107, 130402 (2011).

Page 27: NMR investigations of  Leggett- Garg  Inequality

wt

Experiment – Evaluating K4

(w = 2100)

Error estimate: 0.05

K4 = C12 + C23 + C34 C14

= 3cos(wt) cos(3wt)

time

Q1

t = 0

Q2 Q3

t 2t 3t

Q4

Decay constant of K4 = 324 ms

V. Athalye, S. S. Roy, and TSM, Phys. Rev. Lett. 107, 130402 (2011).

Page 28: NMR investigations of  Leggett- Garg  Inequality

Entropic LGI(ELGI)

A. R. Usha Devi, H. S. Karthik, Sudha, and A. K. Rajagopal,arXiv: 1208.4491 [quant-ph]

Page 29: NMR investigations of  Leggett- Garg  Inequality

timeQ1 Q2 Q3

t2 t3 . . .

. . .

t1

System

A. R. Usha Devi et al,arXiv: 1208.4491 [quant-ph]

System state: 1/2

Dynamical observable : Sz(t) = Ut Sz Ut†

Time Evolution: Ut = exp(iwSxt)

Page 30: NMR investigations of  Leggett- Garg  Inequality

Information Deficit:

timeQ1 Q2 Q3

t2 t3 . . .

. . .

t1

ELGI bound

A. R. Usha Devi et al,arXiv: 1208.4491 [quant-ph]

Page 31: NMR investigations of  Leggett- Garg  Inequality

Extracting ProbabilitiesSingle-event:

timeQk

. . .

. . .

tk

For S = 1/2

P(0) = ½P(1) = ½

Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

k

Page 32: NMR investigations of  Leggett- Garg  Inequality

Extracting Probabilitiestime

Qj

. . .

. . .

tjti

QiTwo-time joint:

Invasivej

Page 33: NMR investigations of  Leggett- Garg  Inequality

Extracting Probabilitiestime

Qj

. . .

. . .

tjti

QiTwo-time joint:

Page 34: NMR investigations of  Leggett- Garg  Inequality

Extracting Probabilitiestime

Qj

. . .

. . .

tjti

QiTwo-time joint:

P(0,qj) P(1,qj)

Non-Invasive Measurement (NIM)

Page 35: NMR investigations of  Leggett- Garg  Inequality

System

Two-time joint probability

CH

system

ancilla

Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

Page 36: NMR investigations of  Leggett- Garg  Inequality

Two-time joint probabilities

P(q1,q2) P(q1,q3)

time

Q1 Q2 Q3

t2 t3t1

Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

Page 37: NMR investigations of  Leggett- Garg  Inequality

Information Deficit

CNOT

Hemant, Abhishek, Koteswar, TSM,arXiv: 1210.1970 [quant-ph]

Page 38: NMR investigations of  Leggett- Garg  Inequality

Information Deficit

CNOT

AntiCNOT

Hemant, Abhishek, Koteswar, TSM,arXiv: 1210.1970 [quant-ph]

Page 39: NMR investigations of  Leggett- Garg  Inequality

Information Deficit

CNOT

AntiCNOT

NIM

Hemant, Abhishek, Koteswar, TSM,arXiv: 1210.1970 [quant-ph]

Page 40: NMR investigations of  Leggett- Garg  Inequality

Legitimate Grand Probability A. R. Usha Devi et al,arXiv: 1208.4491 [quant-ph]

Classical Probability Theory:

P’(q1,q2) = P(q1,q2,q3)q3

P’(q1,q3) = P(q1,q2,q3)q2

P’(q2,q3) = P(q1,q2,q3)q1

P(q1,q2)

P(q1,q3)

P(q2,q3)

Marginals Grand

time

Q1 Q2 Q3

t2 t3t1

Page 41: NMR investigations of  Leggett- Garg  Inequality

Extracting Grand Probability

Three-time joint:

Hemant, Abhishek, Koteswar, TSM,arXiv: 1210.1970 [quant-ph]

Page 42: NMR investigations of  Leggett- Garg  Inequality

Illegitimate Joint Probability

P(q1,q2,q3)is illegitimate !!

Violation ofEntropic LGI

Hemant, Abhishek, Koteswar, TSM,arXiv: 1210.1970 [quant-ph]

Page 43: NMR investigations of  Leggett- Garg  Inequality

Summary• NMR spin-system violated correlation LGI for short time scales

indicating the quantumness of the system.

• The gradual decoherence lead to the ultimate satisfaction of

correlation LGI.

• NMR spins systems also violated entropic LGI in the expected

time interval

• The experimental grand probability P(q1,q2,q3) could not generate

the experimental marginal probability P(q1,q3) supporting the

theoretical prediction.

Thank You !!