NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka...

18
NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka ([email protected])

Transcript of NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka...

Page 1: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

NIST Center for Neutron Research Summer School 2008

Gaithersburg, MD

Kathryn Krycka ([email protected])

Page 2: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Agenda

Part I. Demonstrate how neutrons can be used to study magnetism (reflectivity example from patterned array).

Part II. Apply polarization analysis to obtain 3-dimesional magnetic information (SANS example from nanosphere ensemble).

Page 3: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Motivation: Miniaturize Magnetic Memory

1950’s ~8 bytes / in2

All the essential ingredients:

To achieve goal of TB / in2 we turn to nano-patterning

To characterize magnetic interaction, we look for domain formation…

o Addressability

o Switch single bit (write 0 or 1)

o Store (durability)

o Read (sensing line)

Page 4: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Example I: Magnetic coupling within a nanopillar array

Questions:

1) How do the top and bottom ferromagnetic layers interact?

Ferromagnet M1

(fixed direction, spin polarizer)

Ferromagnet M2 (spin filter)

Nonmagnetic ConductorElectronics +

Spin Sensitivity = Spintronics

Features fully electronic reading (∆ resistance) and writing (reverse magnetic

direction) of bits.

2) What is the magnetic distribution within each nanopillar?

3) What are the size(s) of the in-plane magnetic domains?

Aligns M2 || M1

Aligns M2 Anti-|| M1

Page 5: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Why use neutrons for magnetic analysis?

Neutrons probe deeply and are not surface limited

Recall that

Q̂fk̂

ik̂

ik̂

if kkQ ˆˆˆ

Z

X

Y

Q

See MX and MY, but not MZ

Q

See MX and MZ, but not MY

Neutrons measure length scales from atomic distances, to single nanoparticles, and to domains

Neutrons see all magnetic moments

Neutrons only sense magnetism perpendicular to Q

(Specular reflection) (SANS - like)

Page 6: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Reflection from magnetic nanopillar array

AND/R

M

Thin film sample

Position Sensitive Detector

Vary incident angle

Beam stop

(z-axis)

(x-axis)

600 500 400 300 200 100 0-2

-1

0

1

2

3

4

Thet

a (D

egre

es)

PSD Pixel

-0.015 -0.012 -0.009 -0.006 -0.003 0.000 0.003

0.00

0.03

0.06

0.09

0.12

0.15

QZ (Å

-1)

QX (Å-1)

dQ

2

d

QZQX

Transformed

(y-axis)

θRaw Data

M

Page 7: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

-0.021 -0.018 -0.015 -0.012 -0.009 -0.006 -0.003 0.000 0.003

-0.010

-0.005

0.000

0.005

0.010

0.015

QZ (

Å-1

)

QX (Å-1)

Diffuse scattering and reciprocal space (Specular Plus!)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

10

100

1000

Inte

nsity

Qz (Å-1)

d

3d

-0.005 0.000

100

1000

10000

Inte

nsi

ty

Qx (Å-1)

QZ

QX

dQ

2

Page 8: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Extracting Magnetic Scattering By Varying Applied Field

Magnetic Hysteresis Loop

?A.

SaturateB.

Remove Field(Remanence)

QX

-0.008 -0.006 -0.004 -0.002 0.000 0.002100

1000

10000

Qx (Å-1)

Inte

nsi

ty

Remanence Saturation

-0.006 -0.004 -0.002 0.000 0.002

-20

0

20

40

60

80

Qx (Å-1)

Inte

nsi

ty

Remanence - SaturationA

Bor ?

d=domain size

d2

Page 9: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Magnetic Comparisons

60 Å FeNi | Cu | 60 Å Co

-0.004 -0.002 0.000 0.002 0.004-20

-10

0

10

20

Qx (Å-1)

Inte

nsity

-0.004 -0.002 0.000 0.002 0.004

-20

-10

0

10

20

30

40

50

Qx (Å-1)

Inte

nsity

-0.004 -0.002 0.000 0.002 0.004-50

0

50

100

Qx (Å-1)

Inte

nsity

-0.004 -0.002 0.000 0.002 0.004-50

0

50

100

Inte

nsity

Qx (Å-1)

?

QX

?QX

Top row sequence

Bottom row sequence

then

then

60 Å FeNi | Cu | 40 Å Co

Page 10: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Limitations of Unpolarized Scattering

-0.004 -0.002 0.000 0.002 0.004-50

0

50

100

Inte

nsity

Qx (Å-1)

OR

Strong magnetic anisotropy Random magnetism

Unpolarized scattering provides information about magnetic structure, moment magnitude, and magnetic domains.

However, moment direction is unknown!!!

Page 11: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Neutron Polarization Rules

Scattering Rules*

1) Neutrons magnetically scatter only from moments perpendicular to Q.

Uniform field, H2) Magnetic field polarizes neutrons into up or down spin states (↑ and ↓)

(↑ and ↓)

3) Scattering from magnetic moments parallel to field do not flip neutrons (Non-Spin Flip)

4) Magnetic moments perpendicular to field flip the neutrons (Spin Flip)

* Moon, Riste, and Koehler, Physical. Review 181, 920 (1969)

5) Unpolarized nuclei show no net spin-flipping

Page 12: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

How To Achieve Polarization Analysis

FeSi super mirror is stable and can achieve polarization of ~95%.

FeSi Super Mirror Polarized 3He Cell

3He cells cover divergent beam, but have lower transmission and polarization.

Q

MbMbMbI ccc 2222

Fe

Fe

Si

Si

X X X X X X X X X X X X X X

X X X X X X XX X X X X X X

Polarized 3He allows spin-up neutrons of one orientation to pass while absorbing the opposite orientation.

3He polarization can be reversed with NMR pulse.

(↑ and ↓)

Coil flipper is used to reverse polarization

Page 13: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Example II: Magnetic nanospheres* (SANS)

Magnetic nanoparticles for biomedical and data storage applications. Interparticle magnetic behavior is key.

polycrystalline powder form

* Prepared by Carnegie Mellon group, synthesis described in J. Am. Chem. Soc. 124. 8204 (2002)

Ferromagnetic magnetite (Fe3O4) particles 7 nm in diameter

2.5 nm edge-to-edge separation induces strong magnetic interparticle interaction

Range of magnetic behavior accessible since ferromagnetism kicks in below 65 K

Ideally want a technique that can structurally and magnetically probe the entire ensemble. We are especially interested in magnetic domain formation and temperature.

Page 14: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Small Angle Neutron Scattering (SANS)

-Z

X

Y

UNIFORM MAGNETIZATION MAGNETIZATION ALONG X

Applied field, M

0.02 0.04 0.06 0.08 0.100

1000

2000

3000

4000

Nuclear Scattering

Rel

ativ

e In

tens

ity (

A.U

.)

Q (Å-1)

If we only had magnetic

scattering we might see

something like this…

But nuclear scattering

dominates

AND we want 3D capability.

Page 15: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

0.01 0.02 0.03 0.04 0.05

100

200

300

400 Polarization Separation at 50 K

Re

lativ

e I

nte

nsi

ty (

A.U

.)

Q (Å-1)

3D Magnetometry Using Polarization Analysis

Nuclear = [↑ ↑ + ↓ ↓](X-axis)MZ = [↑↓ + ↓↑](Y-axis)MY = [↑↓ + ↓↑](X-axis) - [↑↓ + ↓↑](Y-axis)MX = [↑ ↑ + ↓ ↓](Y-axis) – [↑ ↑ + ↓ ↓](X-axis)

NuclearMagnetic XMagnetic YMagnetic Z

For X-axis polarization with beam along Z-axis:

Non Spin-Flip Spin-Flip

-Z

X

Y

Polarization

Page 16: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

0.01 0.02 0.03 0.04 0.0510

100

1000

0.01 0.02 0.03 0.04 0.05

1

10

100

1000

10000

Pure Magnetic (main) and Nuclear (inset) ScatteringR

ela

tive

In

ten

sity (

A.U

.)

Q (Å-1)

Result: Temperature Dependence of Magnetic Correlations

Nuclear scattering remains constant (as expected)

50 K100 K200 K300 K

Long-range magnetic correlations decrease with increasing temperature

Fitting shows the domains range from 1000 Å (~ 10 particles) to 100 Å (~ 1 particle)

Page 17: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Key points

If you have an interest in magnetic neutron scattering please feel

free to contact one of the NCNR staff to discuss any questions and

possible experiments.

Neutron scattering is a valuable tool for magnetic analysis given

(1) sensitivity of neutrons to magnetic moments

(2) the ability of neutrons to penetrate below surfaces

(3) large range of length scales they can probe.

Unpolarized data produces the highest count rate.

Polarization analysis delivers 3D magnetic profiling with no subtraction of different

magnetic states.

3He cells allow for polarization analysis of divergent beams such as SANS, triple

axis, and non-specular reflectivity.

NCNR has broad range of polarization capabilities and is actively developing this

mode of data collection.

Page 18: NIST Center for Neutron Research Summer School 2008 Gaithersburg, MD Kathryn Krycka (kathryn.krycka@nist.gov)

Acknowledgements

Julie Borchers, Mark Laver, Brian Maranville, Brian Kirby, Chuck Majkrzak

Wangchun Chen, Thomas Gentile, James McIver, Shannon Watson

NIST Center for Neutron Research, Gaithersburg, MD

SANS Nanoparticle Experiment:

Charles Hogg, Ryan Booth, Sara Majetich

Carnegie Mellon University, Pittsburgh, PA

Yumi Ijiri, Benjamin Breslauer

Oberlin College, Oberlin, OH

Reflectometry Nanopillar Experiment:

Caroline Ross, Wonjoon Jung, Fernando Castano

Massachusetts Institute of Technology, MA

Thank you for your attention!