Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

38
Lecture 6 Pulsars as astrophysical sources of periodic pulses. Physics of pulsars. Drift of periastrium and General relativity tests. Radiation of gravitational waves. Quasar spectra. Search for drift of the fine structure constant. Calibration of astrophysical spectrometers. Search for exasolar planets. Nikolai Kolachevsky

Transcript of Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Page 1: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Lecture 6

• Pulsars as astrophysical sources of periodic pulses.

Physics of pulsars.

• Drift of periastrium and General relativity tests.

Radiation of gravitational waves.

• Quasar spectra. Search for drift of the fine structure

constant.

• Calibration of astrophysical spectrometers. Search for

exasolar planets.

Nikolai Kolachevsky

Page 2: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Pulsars – precise natural clocks in the Universe

Shortest observed pulse period 1.3ms

Angular velocity: Mass:

Highest density – neutron star density

Speed on the surface < c!

=> Rmax=50 km

Rotation period ~ 1 ms – seems to be true!

Page 3: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Neutron stars and white dwarfs

Neutron star – neutron-

proton Fermi liquidElectron-degenerate

matter

Page 4: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Equations of state a white dwarf

Electron-degenerate

matter (electron-nuclei plasma)= 105 – 109 g/cm3

Non-relativistic case

High-energy electron move

very fast

Relativistic regime!

Page 5: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Equations of state a white dwarf

Relativistic case

Pressure:

Gradient:

Electron gas pressure Gravity

Page 6: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Chandrasekar limit

1.44 solar mass !

If mass becomes higher -> supernova class Ia

Standard candle

Page 7: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Hubble constant determination

Page 8: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Emission pattern

Pulsar’s “fingerprints”Slow pulsars

Millisecond

pulsars

Period variation

Millisecond pulsars are old (billion years),

rather weak magnetic field

Have orbital twins!

Page 9: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Pulsars: magnetic field increases!

Initial star (Solar radius)

Pulsar

Magnetic flow is conserved

Magnetic field can reach

Or even higher

Page 10: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Deceleration due to electromagnetic radiation emission

Rotating magnetic dipole

Energy taken from rotation

Huge inertia moment

Energy dissipation Comparable to the Sun radiation

One can evaluate magnetic

moment

Page 11: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Pulsar chronometry

Page 12: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Binary star system (binary pulsars)

Hulse and Taylor -> Nobel Prize 1993

The period of the orbital motion is 7.75 hours,

and the stars are believed to be nearly equal

in mass, about 1.4 solar masses.

Page 13: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Arrival time variation

When the pulsar is on the side of its orbit closest to the Earth, the pulses

arrive more than 3 seconds earlier that they do when it is on the side

furthest from the Earth. The difference is caused by the shorter distance

from Earth to the pulsar when it is on the the close side of its orbit. The

difference of 3 light seconds implies that the orbit is about 1 million

kilometers across.

Page 14: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Period variation

Velocity of the pulsar changes as it

moves through its orbit. When the pulsar

is moving towards us and is close to its

periastron, the pulses should come

closer together.

Gravitational field is stronger => the

pasage of time is slowed down

The time between pulses (ticks)

lengthens just as Einstein predicted.

The pulsar clock is slowed down when

it is travelling fastest and in the

strongest part of the gravitational field

Page 15: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

The observed advance for PSR 1913+16 is

about 4.2 degrees per year; the pulsar's

periastron advances in a single day by the

same amount as Mercury's perihelion

advances in a century.

Rotation of periastron

Page 16: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Gravitational waves emission?

Page 17: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Power radiated by Gravitational waves emission?

Earth-Sun system

200 W power in gravitational waves

Wave amplitude

For the distance of 1 light year

Page 18: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Search for the possible variation of

the fine structure constant

Page 19: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Schrödinger: Schrödinger in atomic units:

Use atomic units no adjustable parameters !

Adjust parameter to match observations.

Dirac in atomic units: Full recoil and QED:

Fundamental Constants in Quantum Mechanics

Page 20: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Parameters express our ignorance.The standard model has 18 of them.

The Role of Parameters

Page 21: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

What‘s the Problem with the

Fundamental Constants ?

Page 22: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Fundamental Constants

- Why do the constants have the observed values?- Can‘t be calculated standard model is incomplete.- Look for phenomena beyond the standard model.- A complete theory should produce small numbers.

Dirac 1937: The age of the universe in atomic units divided by the electromagnetic force between an electron and a proton

measured in units of their gravitational force is such a small number (believed to be 3 in 1937).

Almost every „constant“ could vary in time.

small numbers

Page 23: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Evolution of the Universe

Page 24: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Search for Drift

t1t 2t

1( )t 2( )t - stable value

(dimensionless)

e.g.

cross-section ratio,

mass ratio,

frequency ratio, ...

1 2( , ,...) depends on a set of

fundamental parameters

2 1

2 1

( ) ( )t t

t t

i

t

Model

Page 25: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Search for Drift

t1t 2t

1( )t 2( )t - stable value

(dimensionless)

e.g.

cross-section ratio,

mass ratio,

frequency ratio, ...

1 2( , ,...) depends on a set of

D.Hanneke et al., PRL 100, 120801 (2008)

the value of is known to 410-10 (40 years => )11 110 yr

Sensitivity to the DRIFT is much higher!1710

fundamental parameters

Page 26: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Sensitivity to variationsfor different methods

Page 27: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Oklo Phenomenon

Natural fission 235U/238U reactor

2109 years ago

resonance by 0.1 eV

A.I. Shlyakhter, Nature (London), 264, 340 (1976)

149 150

62 62Sm Smn

Abundance ratio:

149 147

62 62Sm Sm(typical)

(Oklo)0.02

0.9

8( 0.36 1.44) 10

Y.Fujii et al., Nucl. Phys. B, 573, 377 (2000)

Page 28: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Atomic Spectra

1/ 2S

1/ 2P

3/ 2PFS

optical

Transition Scaling

Optical

Fine structure

Hyperfine

structure

Ry

2Ry

2

nucl B Ry

1emission

today

z

FS

optical~ 2

M.P. Savedoff, Nature, 178, 689 (1956)

HFS

Page 29: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Quasar Absorption Spectra

J.K. Webb et al., Phys. Rev. Lett. 87, 091301 (2001)

Page 30: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

"Many-Multiplet" Method

( )NR relf f F Z

depends only on

e

Z( )relF Z

1

2

(1)lnln ln

ln (2)

rel

rel

Ff

t f t F

measurable

valueto be

determinedcalculated from

basic principles

Page 31: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Keck/HIRES results

5( 0.57 0.1) 10

J.K. Webb et al., Phys. Rev. Lett. 87, 091301 (2001)

15 10.5 10 yr

time [109

year]

[1

0-5

]

Keck / HIRES (72 systems):

MgI, FeI, NiI, MgII, CrII, etc.

-1,5

-1,0

-0,5

0,0

0,5

-2 -4 -6 -8 -10 -12

- many-multiplet

- H I H/ 2

Page 32: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Recent astrophysical results

• Murphy et al, 2003: Keck telescope, 143 systems,

23 lines, 0.2<z<4.2

/0.543(0.116) x 105

• Quast et al, 2004: VLT telescope, 1 system, Fe II,

6 lines, z=1.15

/0.4(1.9)(2.7) x 106

• Srianand et al, 2004: VLT telescope, 23 systems,

12 lines, Fe II, Mg I, Si II, Al II, 0.4<z<2.3

/0.6(0.6) x 106

Page 33: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Comparison of sensitivities

Big Bang

13.8 yrG

t

( )Oklo

810 ~

(many-multiplet)

610 ~

1010 yrT ~

1610 <

10 yrT ~

Page 34: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Optical Frequency Metrology

Page 35: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

high sensitivity to drift (< 1016)

short time intervals (~10 yrs)

high reproducibility, big variety of samples

straightforward analysis of systematics

weak model dependence

Laboratory experiments

Page 36: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Ellipse Plot

T. Rosenband et al. SCIENCE 319, 1808 (2008)

16 1( 1.9 4.0) 10 yr

Page 37: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

1016

1015

1017

year

H, Hg , Yb+ +

Keck/HIRES

VLT

VLT

H, Hg , Yb+ +

Hg+ и Al

+

2002 2004 2006 2008sen

sitiv

ity t

o

[1

0 y

r]

/

-15

-1

Sensitivity to linear drift

Astro

Lab

Page 38: Nikolai Kolachevsky Lecture 6 - power1.pc.uec.ac.jp

Laser Frequency Combs for Astronomical Observations

Image: ESO T. Steinmetz et al, SCIENCE 321, 5894 (2008)