Next Generation High-Energy Density Li-Ion -

26
Next Generation High-Energy Density Li-Ion Batteries Marie Kerlau Young Engineers + Scientists Symposium 2012 March 20 th , 2012, Berkeley, California 1 Leyden Energy Proprietary

Transcript of Next Generation High-Energy Density Li-Ion -

Page 1: Next Generation High-Energy Density Li-Ion -

Next Generation High-Energy Density Li-Ion Batteries

Marie Kerlau

Young Engineers + Scientists Symposium 2012 March 20th, 2012, Berkeley, California

1 Leyden Energy Proprietary

Page 2: Next Generation High-Energy Density Li-Ion -

Agenda •  Presentation of Leyden Energy •  Current Issues in Mobile Device Designs

Relating to Li-ion Batteries •  Energy Density Challenges and How to Address

Them •  Silicon-Based Materials •  Conclusion •  Q&A

2 Leyden Energy Proprietary

Page 3: Next Generation High-Energy Density Li-Ion -

•  2007 – Leyden Energy founded

around acquisition of DuPont patent, spearheading the use of lithium-imide salt in battery electrolyte.

•  4 years of consequent R&D efforts led to the first scalable lithium-imide product launch by Leyden Energy in 2010

•  2011 - Series B Funding led by NEA, Lightspeed, Sigma, & Walden

A bit about Leyden Energy

3 Leyden Energy Proprietary

Page 4: Next Generation High-Energy Density Li-Ion -

•  100% backward-compatible manufacturing processes leveraging existing lithium-ion production lines

•  UL/UN certified products (UL1642 & UN/DOT tests).

•  Multi-sourced, Tier-1 OEM approved

manufacturing partners in Asia with global distribution supply chain. “Factory within a factory” – Leyden Energy’s QC engineers on-site.

•  US-based pilot manufacturing and testing facility for world-class quality control & rapid prototyping. Facilities based in Fremont, CA.

Leyden  Energy’s  Fremont  ,  CA-­‐based  manufacturing,  packaging  and  tes<ng  capabili<es  enable  stateside  rapid  prototyping.      

Scalable Manufacturing, Testing and Rapid Prototyping

4 Leyden Energy Proprietary

Page 5: Next Generation High-Energy Density Li-Ion -

•  UL/UN  cer$fied  products  (UL1642  &  UN/DOT  tests).    

US-­‐based  pilot  manufacturing  and  tes<ng  facility  for  world-­‐class  quality  control  &  rapid  prototyping.  Facili<es  based  in  Fremont,  CA.      

ü  Heat  Test  ü  Impact  Test  ü  Crush  Test  ü  Short  Circuit  Test  ü  Overcharge  Test  ü  Forced  Discharge  Test    …  and  other  tests.  

•  7 UL-approved products in 2011

5

Scalable Manufacturing, Testing and Rapid Prototyping

Leyden Energy Proprietary

Page 6: Next Generation High-Energy Density Li-Ion -

LiPF6 + H2O = Trouble…

LiPF6 Hydrofluoric Acid is generated in reaction with H2O

DEGRADATION OF ACTIVE MATERIALS; GASSING; SHORTENED LIFECYCLE – ACCENTUATED BY RISING IN-DEVICE TEMPERATURE 6 Leyden Energy Proprietary

Page 7: Next Generation High-Energy Density Li-Ion -

…Compounded by in-device heat

Mobile phone Tablet

7 Leyden Energy Proprietary

Page 8: Next Generation High-Energy Density Li-Ion -

8

Lithium  Ion  Technology  Chemical  produc$on  of  Hydrofluoric    Acid  causes  bloa$ng,  deprecia$on    of  func$onality.  

Lithium  Imide  Technology  Increased  temperature  range,  no  Hydrofluoric  Acid  produc$on,  3x  performance  improvement.  

Li-imide™ Chemical Advantage

Anode LiPF6

Cathode

Anode Li-imide Cathode

Leyden Energy Proprietary

Page 9: Next Generation High-Energy Density Li-Ion -

Li-imide™ – Pouch cycling at 20/40°C (68/104°F)

9 Leyden Energy Proprietary

Page 10: Next Generation High-Energy Density Li-Ion -

Swelling over battery lifetime at 40˚C/104˚F

10 Leyden Energy Proprietary

Page 11: Next Generation High-Energy Density Li-Ion -

11

More battery capacity per volume (volumetric) and weight (gravimetric) means more power per charge, or the same power in smaller/thinner packs.

With near-optimal performance over calendar life inventory outlasts LiPF6 by 300% giving embedded products far more shelf life.

Performance exceeds Li-ion (LiPF6 electrolyte) batteries by roughly 3:1 with over 1,000 charge/discharge cycles at 100% DOD (depth of discharge)

Superior thermal properties allow the battery to operate and cycle at temperatures exceeding those of conventional Li-ion cells – from -20°C (-4°F) up to continuous use at 60°C (140°F).

Triple Cycle Life

Higher Energy Density Triple Calendar Life

Temperature Resilience

Lithium Imide: Never Compromise

Leyden Energy Proprietary

Page 12: Next Generation High-Energy Density Li-Ion -

12

Leyden Energy – Target Applications

All  markets,  especially  the  portable  electronics  market,  require  ever  increasing  energy  density  

Leyden Energy Proprietary

Page 13: Next Generation High-Energy Density Li-Ion -

Energy Density Challenge: Form vs. Function

“Customers demand longer runtime per charge” = higher energy density or larger Z height

“Customers demand thinner devices” = smaller Z height

13 Leyden Energy Proprietary

Page 14: Next Generation High-Energy Density Li-Ion -

No Moore’s Law for Li-ion

“Forget  Moore’s  Law  —  it’s  nothing  like  that…  Lithium  ion,  which  clearly  is  the  best  baWery  technology  today,  is  flat,  completely  flat  since  2003”  Winfried  Wilcke,  IBM    Source:  hWp://green.blogs.ny$mes.com/2010/09/06/when-­‐it-­‐comes-­‐to-­‐car-­‐baWeries-­‐moores-­‐law-­‐does-­‐not-­‐compute/  14 Leyden Energy Proprietary

Page 15: Next Generation High-Energy Density Li-Ion -

Cycle life suffers with increase in energy density

LiPF6  based  pouch  cells  at  40°C  

15

Source:  Leyden  Energy  

Leyden Energy Proprietary

Page 16: Next Generation High-Energy Density Li-Ion -

New Materials Are Needed to Boost Energy Density

16

Cathode  

Anode  

Electrolyte  

Issues  

High  capacity  materials  have  short  cycle  life  

No  candidate  with  high  capacity  at  4.2V  (120-­‐160mAh/g)  

DegradaSon  at  higher    voltages  than  4.2V  

Next  GeneraSon  Materials  

Alloys  (Si-­‐  and  Sn-­‐  based)  composites,  oxides  (SiO,SnO)  (600-­‐900mAh/g)  

5V  Mn-­‐cathode  solid  soluSon  system  (300mAh/g)  

Ionic  liquids,  5V  systems  

Leyden Energy Proprietary

Page 17: Next Generation High-Energy Density Li-Ion -

ANODE    

Silicon  

 

ELECTROLYTE    

Cathode  and  Anode  agnos$c  

 

CATHODE    

NCM,  NCA,  LCO  and  High-­‐Voltage  Cathode  

 

17

Areas For Battery Innovation

Leyden Energy Proprietary

Page 18: Next Generation High-Energy Density Li-Ion -

Silicon: the Next-Generation High-Capacity Anode Material For Li-Ion Batteries

•   Si  has  10x  higher  Li-­‐ion  storage  capability  than  graphite    Graphite:  C6    ↔    LiC6    Theore$cal  Capacity:  372  mAh/g  

   Silicon:  Si    ↔    Li4.4Si        Theore$cal  Capacity:  4200  mAh/g  

 •   Problem:  up  to  400%  volume  expansion  during  Li  ions      inser$on/extrac$on  causes  a  rapid  decrease  in  cycling  stability    •   Industry  has  been  searching  for  silicon  anode  that  works      and  is  affordable  

18 Leyden Energy Proprietary

Page 19: Next Generation High-Energy Density Li-Ion -

19

•  Lower Dimensionality

o  Nanowires, Thin Films

•  Carbon Matrix

o  Si Nanoparticles Embedded in Carbon Matrix

•  Transition Metal Carbon Alloys and Oxides

o  Armorphous Regions with Si and No Carbide Formed

•  High Porosity

o  Si Coated on Porous Carbon Black, Nanotubes, Porous Si

Approaches to Solve Si Volume Change Problem

Leyden Energy Proprietary

Page 20: Next Generation High-Energy Density Li-Ion -

Binder-Free Electrode: Si Growth on Metallic Support

Si  Thin  Film  

Si  Nanowires  

1-­‐Dimensional  Expansion  Reduces  Mechanical  Stress  During  Cycling  

Lithia$on  

Cracks,  Peeling  Cycling:  0.01-­‐1.2V,  1C  

Cycling:  0.01-­‐2V,  C/5  

Lithia$on  

Ø   High  capacity  but  difficulty  in    handling  nanowires  makes  it  difficult  to  mass  produce  

Ø   Despite  high  ini$al  capacity  the  film  cracks  upon  cycling  G.B.  Cho,  M.G.  Song,  S.H.  Bae,  J.K.  Kim,  Y.J.  Choi,  H.J.  Ahn,  J.H.  Ahn,  K.K.  Cho,  K.W.  Kim,  JPS  189  (2009)  738-­‐742.  

C.  K.  Chan,  R.  Ruffo,  S.  S.  Hong,  R.  A.  Huggins,  Y.  Cui,  JPS  189    (2009)  34-­‐39.  

Leyden Energy Proprietary 20

Page 21: Next Generation High-Energy Density Li-Ion -

Capacity  m

Ah.g

-­‐1  

Cycle  Number  

Coulom

bic  Effi

cien

cy  (%

)  

Cycling:  0.01-­‐2V,  0.2C  

Carbon-­‐Si  Core-­‐Shell  Nanowires  

Crystalline-­‐Amorphous  Core-­‐Shell  Si  Nanowires  

a-­‐Si  c-­‐Si  

Binder-Free Electrode: Si Growth on Metallic Support 1-­‐Dimensional  Expansion  Reduces  Mechanical  Stress  During  Cycling  

Cycling:  0.01-­‐1V,  C/5  Cycle  Number  

Coulom

bic  Effi

cien

cy  

Capacity  m

Ah.g

-­‐1  

Ø   Poor  adhesion  to  substrate  and  high  synthesis  costs  make  this  material            difficult  to  handle/  manufacture  

L.-­‐F.  Cui,  Y.  Yang,  C.-­‐M.  Hsu,  and  Y.  Cui,  ,  Nano  LeGers  9  (9)  (2009)  3370-­‐3374  .  

L.-­‐F.  Cui,  R.  Ruffo,  C.  K.  Chan,  and  Y.  Cui,  ,  Nano  LeGers  9  (1)  (2009)  491-­‐495.  

Leyden Energy Proprietary 21

Page 22: Next Generation High-Energy Density Li-Ion -

Silicon-Carbon Composite

Core-­‐Shell  Model  (Si@C)  

Grain-­‐Matrix  Model  (Si/C)  

Carbon  Matrix  Accommodates  the  Volume  Changes  Upon  Lithia$on/Delithia$on  

A`er  LithiaSon   A`er  DelithiaSon  As  Prepared  

Ø   Carbon  matrix/coa$ng  can  only  accommodate  volume  changes  to  a  limited            extent  thus  limi$ng  cycle  life  

P.  Gao,  J.  Fu,  J.  Yang,  R.  Lv,  J.  Wang,  Y.  Nuli  and  X.  Tang,  Phys.  Chem.  Chem.  Phys.  11  (2009)  11101-­‐11105.  

Leyden Energy Proprietary 22

Page 23: Next Generation High-Energy Density Li-Ion -

Silicon-Carbon Composite

Granules:  Si  in  Porous  Carbon  Matrix    

Carbon  Black  

Si  

Si  Nanowires  

Pores  Accommodate  the  Volume  Changes  Upon  Lithia$on/Delithia$on  

Cell  po

ten$

al  (V

)  vs.  Li  m

etal  

Ø   Low  energy  density  due  to  high  porosity;  consump$on  of  electrolyte  due  to  high            surface  area  

Ø   Nanotube  agglomera$on  upon  cycling  reduces  cycle  life    

A.  Magasinski,  P.  Dixon,  B.  Hertzberg,  A.  Kvit,  J.  Ayala  and  G.  Yushin,  Nature  Materials  9  (2010)  353-­‐359  .  

M.-­‐H.  Park,  M.  G.  Kim,  J.  Joo,  K.  Kim,  J.  Kim,  S.  Ahn,  Y.  Cui,  and  J.  Cho,  Nano  LeGers  9  (11)  (2009)  3844-­‐3847.  

Leyden Energy Proprietary 23

Page 24: Next Generation High-Energy Density Li-Ion -

Alloys and Oxides Inac$ve  Phase  Accommodates  the  Volume  Changes  Upon  Lithia$on/Delithia$on  

Alloy  (Si  with  transiSon  metals  and  metals:  for  example  Mn,  Co,  Al,  Sn)    

Oxide  (SiO)  

Ø   Lower  capacity  than  pure  Silicon  but  volume  change  is  smaller;  lower  1st  CE  than  the  alloy  

+Li+  

-­‐Li+  

Ø   Lower  capacity  than  pure  Silicon  but  volume  change  is  smaller  

M.  Yamada,  A.  Ueda,  K.  Matsumoto,  and  T.  Ohzuku,  JES,  158  (4)  (2011)  A417-­‐A421    

K.  Eberman,  3M  Company,  29th  Interna$onal  BaWery  Seminar  in  Florida  (2012-­‐5-­‐16).  

Leyden Energy Proprietary 24

Page 25: Next Generation High-Energy Density Li-Ion -

25

Conclusion

•  Consumer  demand  for  higher-­‐energy  density  devices  creates  

challenges  to  design  thinner  baWeries  with  longer  run  $me  

•  The  trade-­‐off  with  Silicon  anode  material:  

•  The  highest-­‐capacity  Si  (2000  to  3500  mAh/g)  does  not  have  a  

cathode  material  to  match  such  a  high  capacity,  manufacturability  

is  ques$onable  (costs  +  technical  difficul$es),  cycle  life  is  limited  

•  Lower-­‐capacity  Si  (<1500mAh/g),  with  lower  expansion  rate  and  

manufacturing  costs,  longer  cycle  life,  would  enable  higher-­‐

energy  density  baWeries  to  be  commercially  available  sooner  

Leyden Energy Proprietary

Page 26: Next Generation High-Energy Density Li-Ion -

26

Headquarters 46840 Lakeview Boulevard Fremont, California 94538 [email protected] Phone: +1-510-933-3800 Fax: +1-510-445-1032

America/Europe Sales [email protected] Phone: +1-510-933-3855 Toll Free: +1-866-543-4877

China Unit 2911-2912 29/F International Chamber of Commerce Tower, Fuhua Rd. 3 CBD Futian District, Shenzhen, 518048 China [email protected] Phone: +86-135100-75409