Newtonian derivation of Plank's quantum error h (constant)

download Newtonian derivation of Plank's quantum error h (constant)

of 12

Transcript of Newtonian derivation of Plank's quantum error h (constant)

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    1/12

    Newtonian derivation of Plank's quantum error h (constant) and E = h

    Greetings: My name is Joe Nahhas founder of real time physics and astronomy

    Abstract: Nobel Prize winner sciences are based on the silly ideas of space- time travel,

    or, quantum - relativistic - strings mechanics and space- time travel is not any science

    Plank's E = h can be derived from Newton's time dependent mechanics as rotational

    measurement error made on rotating Earth. Max Plank's E = h ; h = 6.62606957 x 10-34

    Joules - second is plank's constant [1]and is particle frequency is Planet Earth rotationalmeasurement error when Earth's (mass x areal velocity) is measured inversely as the photo

    electric effect.

    Newton's equation solution

    Newton's equation is:

    F = m; = [r" - r '] r1+ [2 r' ' + r "] 1

    With m (r" - r ')= - Gm M/r2 Eq-1

    And 2 r' ' + r "= 0 Eq-2

    Page 1

    http://www.google.com/imgres?q=images+of+Nobel&hl=en&qscrl=1&nord=1&rlz=1T4RNRN_enUS418US419&biw=1024&bih=575&tbm=isch&tbnid=6L0TvIKbBkZ-3M:&imgrefurl=http://en.wikipedia.org/wiki/Alfred_Nobel&docid=Bb9XqWnU-DrC-M&imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/AlfredNobel_adjusted.jpg/220px-AlfredNobel_adjusted.jpg&w=220&h=302&ei=AlPCT8G8N6Hg2gW8vJ2LAQ&zoom=1&iact=hc&vpx=90&vpy=114&dur=968&hovh=241&hovw=176&tx=100&ty=125&sig=110032219380305877181&page=1&tbnh=115&tbnw=80&start=0&ndsp=21&ved=1t:429,r:0,s:0,i:71http://www.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/4/42/Max_Planck_(Nobel_1918).jpg/220px-Max_Planck_(Nobel_1918).jpg&imgrefurl=http://en.wikipedia.org/wiki/Max_Planck&h=311&w=220&sz=14&tbnid=Lo95dWVFgtqxZM:&tbnh=186&tbnw=131&prev=/search?q=images+of+max+planck&tbm=isch&tbo=u&zoom=1&q=images+of+max+planck&usg=__3Fe54wu9853KYifylSzJaDNS_dk=&docid=4l80kFCubEnrKM&hl=en&sa=X&ei=tDbCT_L1E8We2AW8qKnKAg&sqi=2&ved=0CEoQ9QEwAA&dur=2172http://www.google.com/imgres?q=images+of+Nobel&hl=en&qscrl=1&nord=1&rlz=1T4RNRN_enUS418US419&biw=1024&bih=575&tbm=isch&tbnid=6L0TvIKbBkZ-3M:&imgrefurl=http://en.wikipedia.org/wiki/Alfred_Nobel&docid=Bb9XqWnU-DrC-M&imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/AlfredNobel_adjusted.jpg/220px-AlfredNobel_adjusted.jpg&w=220&h=302&ei=AlPCT8G8N6Hg2gW8vJ2LAQ&zoom=1&iact=hc&vpx=90&vpy=114&dur=968&hovh=241&hovw=176&tx=100&ty=125&sig=110032219380305877181&page=1&tbnh=115&tbnw=80&start=0&ndsp=21&ved=1t:429,r:0,s:0,i:71http://www.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/4/42/Max_Planck_(Nobel_1918).jpg/220px-Max_Planck_(Nobel_1918).jpg&imgrefurl=http://en.wikipedia.org/wiki/Max_Planck&h=311&w=220&sz=14&tbnid=Lo95dWVFgtqxZM:&tbnh=186&tbnw=131&prev=/search?q=images+of+max+planck&tbm=isch&tbo=u&zoom=1&q=images+of+max+planck&usg=__3Fe54wu9853KYifylSzJaDNS_dk=&docid=4l80kFCubEnrKM&hl=en&sa=X&ei=tDbCT_L1E8We2AW8qKnKAg&sqi=2&ved=0CEoQ9QEwAA&dur=2172http://www.google.com/imgres?q=images+of+Nobel&hl=en&qscrl=1&nord=1&rlz=1T4RNRN_enUS418US419&biw=1024&bih=575&tbm=isch&tbnid=6L0TvIKbBkZ-3M:&imgrefurl=http://en.wikipedia.org/wiki/Alfred_Nobel&docid=Bb9XqWnU-DrC-M&imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/AlfredNobel_adjusted.jpg/220px-AlfredNobel_adjusted.jpg&w=220&h=302&ei=AlPCT8G8N6Hg2gW8vJ2LAQ&zoom=1&iact=hc&vpx=90&vpy=114&dur=968&hovh=241&hovw=176&tx=100&ty=125&sig=110032219380305877181&page=1&tbnh=115&tbnw=80&start=0&ndsp=21&ved=1t:429,r:0,s:0,i:71http://www.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/4/42/Max_Planck_(Nobel_1918).jpg/220px-Max_Planck_(Nobel_1918).jpg&imgrefurl=http://en.wikipedia.org/wiki/Max_Planck&h=311&w=220&sz=14&tbnid=Lo95dWVFgtqxZM:&tbnh=186&tbnw=131&prev=/search?q=images+of+max+planck&tbm=isch&tbo=u&zoom=1&q=images+of+max+planck&usg=__3Fe54wu9853KYifylSzJaDNS_dk=&docid=4l80kFCubEnrKM&hl=en&sa=X&ei=tDbCT_L1E8We2AW8qKnKAg&sqi=2&ved=0CEoQ9QEwAA&dur=2172
  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    2/12

    I - Real numbers or time independent solution

    Eq-2: 2 r' ' + r "= 0

    Multiply by r> 0

    Then 2 r r' ' + r2"= 0

    Or, d (r')/d t = 0

    And integrating: r' = h = constant

    With m (r" - r ')= - Gm M/r2

    Then, (r" - r ')= - GM/r2

    Let u = 1/r; r = 1/u; r' = h = /u

    And r' = d r/d t = (d r/ d u) (d u /d ) (d / d t)

    = (- /u ) (d u /d ) '

    = (-'/u ) (d u /d )

    = - h (d u/ d )

    And r' = d r/d t = - h (d u/ d )

    And r" = d r/ d t = d (d r'/ d t)/ d t

    = d [- h (d u/ d )]/ d t

    Multiply (d / d )

    Then r" = d r/ d t = {d [- h (d u/ d )]/ d t} (d / d )

    = ' {d [- h (d u/ d )]/ d }

    = - h (d u/ d )

    = (- h/r) (d u/ d )

    = - h u (d u/ d )

    And r" = d r/ d t = - h u (d u/ d )

    With d r/dt - r ' = - G M/r2 E q 1

    And - h u (d u/ d ) (1/u) (h u) = - G M u2

    Then (d u/ d ) + u = G M/h2

    Page 2

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    3/12

    And u = G M/h2+ A cosine

    The r = 1/u = 1/ (G M/h2+ A cosine ); divide by G M/h2

    And r = (h2/G M)/ [1 + (A h2/G M) cosine ]

    With; h2/G M = a (1 - 2); (A h2/G M) =

    This is Newton's equation classical solution

    Or, r = a (1 - 2)/ (1 + cosine ); definition of an ellipse ------------- I

    Newton's time independent solution

    II - Real time or complex numbers solution :

    Newton's equation in polar coordinates

    F = m; = [r" - r '] r1+ [2 r' ' + r "] 1With m (r" - r ')= - Gm M/r2 Eq-1

    And 2 r' ' + r "= 0 Eq-2

    Eq-2: 2 r' ' + r "= 0

    Separate the variables: 2 r' ' = - r "

    Or 2(r'/r) = - ("/') = - 2 ( + )

    Then: (r'/r) = +

    Or d r/r = ( + ) d t

    Then r = r 0(+ )t

    And r = r (, 0) r (0, t); r 0= r (, 0)

    And r = r (, 0) (+ )t

    And r (0, t) = (+ )t

    With r (, 0) = a (1 - 2

    )/ (1 + cosine )

    Then, r (, t) = [a (1-)/ (1+ cosine )] (+ )t ------------- I

    If time is frozen that is t = 0

    Then r (, 0) = a (1-)/ (1+ cosine ) or classical

    Page 3

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    4/12

    Relativistic is the difference between I and Real II

    With - ("/') = - 2 ( + )

    Then ' = '0 -2 (+ )t

    With '0 = h/[r (, 0)] 2

    And '(, t) = [' (, 0)] -2(+ )t

    And, '(, t) = ' (, 0) ' (0, t)

    And ' (0, t) = -2(+ )t

    At Perihelion:

    We Have ' (0, 0) = h (0, 0)/r (0, 0) = 2ab/ 0 a (1- ) ;0 = orbital period

    = 2a [ (1- )]/0a (1- ) ]

    = 2[ (1- )]/0 (1- ) ]

    Then '(0, t) = 2 [(1- )/ 0 (1- ) ] -2(+ )t

    With = 0; then '(0, t) = 2 [(1-)/ 0 (1-) ] -2(+ )t

    = 2 [(1-)/ 0 (1- ) ] (cosine 2 t - sine 2 t)

    Real '(0, t) = 2 [(1- )/ 0 (1-) ] cosine 2 t

    Real '(0, t) = 2 [(1-)/ 0 (1-) ] (1 - 2sine t)

    Naming ' = '(0, t); '0 = 2 [(1-)/ 0 (1-) ]

    Then ' = 2 [(1- )/ 0 (1- ) ] (1 - 2 sine t)

    And ' = '0 (1 - 2 sine t)

    And ' - '0 = - 2 '0 sine t = -2{2 [(1-)/ 0 (1-) ]} sine t

    And ' - '0 = -4 [(1-)/0 (1-) ] sine t

    With, v = spin velocity; v0 = orbital velocity; 0 = orbital period

    And 0= tan-1 [(v + v0)/c]; light aberrations

    Page 4

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    5/12

    ' = ' - '0

    = - 4 [(1-)]/0 (1-) ] sine tan-1 [(v + v0)/c] radians per0

    In degrees per period is multiplication by 180/

    ' = (-720) [(1-)/0 (1-) ] sine tan-1 [(v + v0)/c]

    The angle difference in degrees per period is: = ( ') 0

    = (-720) [(1-)/(1-) ] sine tan-1 [(v + v0)/c] calculated in degrees per century ismultiplication = 100 ;= Earth orbital period = 100 x 365.26 =36526 days and dividing byusing 0 in days: (100 /0)= in degrees per century

    = (-72000 /0) [(1-)/ (1-) ] sine tan-1 [(v + v0)/c]

    In arc second per century is multiplying by 3600

    = - 3600 x 720 (100 /0) [(1-)/ (1-) ] x Sine tan-1 [(v + v0)/c]

    Approximations I

    With v

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    6/12

    And v0 = 48.14 km/sec [Mercury]; c = 300,000

    (Calculated in arc second per century)

    = (-720x36526x3600/0days) [(1-)/ (1-) ] [(v + v0)/c]

    With = 0.206; [(1-)/ (1-) ] = 1.552; v = 3 meters per second

    = (-720x36526x3600/88) 1.552 (48.143/300,000)

    = 43 arc second per century

    Summary

    = (-720x36526x3600/0days) [(1-)/ (1-) ] [(v + v0)/c]

    = (-720x36526x3600/88) 1.552 (48.143/300,000)

    = 43 arc second per century; 8 arc second per century for Venus; v =41.26

    Or, r = a (1 - 2)/ (1 + cosine ); definition of an ellipse

    Rotating ellipse, r (, t) = [a (1-)/ (1+ cosine )] (+ )t ------------- I

    In general:

    1 = 1 is self evident; 2 = 2 is self evident

    A = A is self evident; B = B is self evident

    A = A; add and subtract B

    A = B + (A - B); divide by B

    (A/B) = 1 + (A - B)/B; multiply by D

    Page 6

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    7/12

    (A/B) D = D + [(A - B)/B] D --------------------------------- Equation - 1

    C = C is self evident; D = D is self evident

    Or C = C; add and subtract D

    C = D + (C - D) ----------------------------------------------- Equation - 2

    Comparing equations 1 and 2 yields, (1) AC = BD; (2) D = D; and (3)

    C - D = [(A - B)/B] D

    Or (C - D)/D = (A - B)/B

    Or D/D = B/B; Divide by t

    (1/D) ( D/ t) = (1/B) ( B/ t)

    Limit [(1/D) ( D/ t)] = Limit [(1/B) ( B/ t)] = ( + )

    t --- 0 t --- 0

    Or, d B/B = ( + ) d t

    Or, B = B0 e ( + ) t = Ae ( + ) t

    B = Ae ( + ) t

    Distance is A; real time distance is B = Ae ( + ) t

    Or in general real time distance is r = r0 e ( + ) t

    In general: Euclidean distance r0 measurement on rotating Earthr= r0 e t; = 0

    Page 7

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    8/12

    With r= r0 e t

    The velocity equation is: v = [v0 + r0] e t ------------------- Equation - 3

    The areal velocity : r v = [r0v0+ r02] e 2 t------------------- Equation - 4

    Considering v0 = 0; r v = ( r02) e 2 t

    And v2 = - r02 e 2 t = - r02 [cosine 2t + sine 2t]

    With h = m r v/2 = - [m r02 /2] [cosine 2t + sine 2t]

    Then, h x = - [m r02 /2] cosine 2t

    And hy= - [m r02 /2] sine 2t

    Also, hy/ h x= tan 2t

    Consider the following:

    1 = 1 is self evident; 2 = 2 is self evident

    A = A is self evident; B = B is self evident

    Or A = A; add and subtract B

    A = B + (A - B); divide by B

    (A/B) = 1 + (A - B)/B; multiply by D

    (A/B) D = D + [(A - B)/B] D --------------------------------- Equation - 1

    C = C is self evident; D = D is self evident

    Or C = C; add and subtract D

    C = D + (C - D) ----------------------------------------------- Equation - 2

    Comparing equations 1 and 2 yields, (1) AC = BD; (2) D = D; and (3)

    C - D = [(A - B)/B] D

    A = Sun - Mercury - distance = 58.2 x 109 meters;

    B = Sun - Earth distance = 149.6 x 109 meters

    Page 8

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    9/12

    Sun - Mercury Period in seconds = 88 days x 24 hours x 60 min x 60 sec

    Let D be planet Mercury angular velocity around the Sun

    D= 2 x /88 x 24 x 60 x 60 radians per period

    Planet Mercuryangular velocity around the Sun in arc second per century D

    = (2 x /88 x 24 x 60 x 60) (180/ ) (36526/88) (3600)

    = 70.75 arc sec per century.

    A = 58.2 x 109; B = 149.6 x 109; D = 70.75

    Andthe answer is[(A - B)/B] D = [(58.2 x 109 - 149.6 x 109)/ 149.6 x 109] x 70.75 = 43arc sec per/100 years

    This equation said: (A/B) D = D + [(A - B)/B] D

    Or, visual = actual + (visual - actual)

    Or, visual = actual + visual effects

    Measured = actual + (measured - actual)

    Measured = actual + visual effects

    Measured = actual + relativistic

    (A/B) D = D + [(A - B)/B] D said

    If measuring D, then multiplying by (A/B)

    Same argument:

    1 = 1 is self evident; 2 = 2 is self evident

    With hy= hyis self evident; h x = h x is self evident

    Or hy= h y; then add and subtract h x

    Then, h y= h x + (hy- h x); divide by h x

    Then, (h y/ h x) = 1 + (hy- h x)/ h x; multiply by h0

    And (hy/ h x) h0 = h0 + [(h y- h x)/ h x] h0 --------------------------------- Equation - 1

    Page 9

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    10/12

    With h = h is self evident; h0 = h0 is self evident

    Or h = h; add and subtract h0

    Then, h = h0 + (h - h0) ----------------------------------------------- Equation - 2

    Comparing equations 1 and 2 yields, (1) h = (hy/ h x) h0; (2) h0 = h0

    And (3) h - h0 = [(h y- h x)/ h x] h0

    From (1) h = (hy/ h x) h0

    With hy/ h x= tan 2t

    Then h = h0 tan 2t

    Measurement error I

    A disc on a rotating spherical Earth has a circumference of 2 re and 2 re / re = 2 .Modern Nobel physicists and astronomers measurements were/are made in an inverse

    square distance Newton's law and that would make the error 1/ (2). Modern Nobel

    physicists and astronomers measure space distance vertically and that would make the

    vertical error Sine-1[1/ (2)]. Modern Nobel physicists and astronomers use standard

    time period Ts = 24 hours = 86400 seconds and not Earth's spin period Te = 86164

    seconds and that bring the measurement error to (Te/ Ts) Sine-1[1/ (2)]. Modern

    Nobel physicists and astronomers measure in air and not vacuum with air index of

    refraction n a = 1.000293 brings the total measurement error to a value equals to:

    Error 1is the celestial sphere:(1/ n a) (Te/ Ts) Sine-1[1/ (2)] = 23.44

    This celestial sphere is a visual illusion or measurement error of spherical Earth

    Page 9

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    11/12

    In atomic physics the factor (Te/ Ts) is never considered and the quantity (Te/ Ts) is

    taken out of (1/ n a) (Te/ Ts) Sine-1[1/ (2)] and the new value is and they use kinetic theoriesor volumes and hydrogen with hydrogen index of refraction 1.000132

    Measurement error I is

    (1/ n a) 3 Sine-1[1/ (2)] = 23.50276363 0

    And h = h0 tan 2t;2 t = 2 x 23. 50 0= 47.0 5527270

    Measurement error II

    NASA's Earth data sheet: Earth's radius is re = 6, 371, 000 meters; Earth's densitye =5515 kg/m3; Earth's spin Te = 86164, but Te = 86164.08 by proceedings of the American

    philosophical society held in 1884 page 132 and Te = 86164.09 by Practical handbook of

    marine science. An average of 86164.085 is reasonable

    Earth's mass: me= (4/3)e re3= (4/3) (5515) (6371, 000) 3= 5.973886146 x 1024 kg

    Earth's he = h0 = me re2/2 = (5.973886146 x 1024) (6371, 000) 2/ (86164.085)

    = 1.407070556 x1033 kg m2 sec-1

    And he = 1.407070556 x1033 kg m2 sec-1 tan47.0 5527270

    Then he tan 2 t= 1.509190303 x 1033

    What Plank's mania did is an error measurement regarding gases mass x

    areal velocity using emission spectrum or light or photo electric effect. They

    used translational quantities and measured rotational quantities and the

    emission did not rotate but Earth is rotating and what is measured is 1/he

    The quantity h =1/ he tan 2 t = 6.62606957 x 10-34Joules - second plank's error

    In theory: They made theoretical mistakes

    With r= r0 e t

    The velocity equation is: v = [v0+ r0] e t ------------------- Equation - 3

    The velocity squared: v2 = [v0+ r0]2e 2 t------------------- Equation - 4

    Page 11

  • 8/8/2019 Newtonian derivation of Plank's quantum error h (constant)

    12/12

    At t = 0, time of measurement

    And v2 = [v0+ r0]2

    = v02 - 2 r02 + 2 r0 v0

    And Kinetic energy E = m v2/2 = (m/2) [v02 - 2 r02 + 2 r0 v0]

    E = (m v2/2) - (m v02/2)

    E = - m 2 r02/2 + m r0 v0 Newtonian time dependent energy

    E = Ex+ E y= - m 2 r02/2 + m r0 v0

    I - Classical or time independent Newtonian time independent energy

    Ex = - m 2 r02/2

    = - m c2/2; r0 = c

    = - h /2; m r02 = h; =

    II - Modern or Nobel or Quantum - Relativistic or Newtonian time dependent energy

    E y= m r0 v0

    = mc2; r0 = c

    = h ; m r02 = h; =

    Conclusion is: The atomic - electronic shell structure measurements are an

    inverse Earth nucleus and the electron is an inverse Sun electron

    References: [1] NIST 2010 data

    All rights reserved

    Page 12