Newrad 2011, Maui, Hawaii Heather J. Patrick, Leonard ... › newrad2011 › presentations ›...

17
Newrad 2011, Maui, Hawaii Heather J. Patrick, Leonard Hanssen, Jinan Zeng and Thomas A. Germer National Institute of Standards and Technology, Gaithersburg, MD 20899 USA email: [email protected]

Transcript of Newrad 2011, Maui, Hawaii Heather J. Patrick, Leonard ... › newrad2011 › presentations ›...

  • Newrad 2011, Maui, Hawaii

    Heather J. Patrick, Leonard Hanssen, Jinan Zeng and Thomas A. Germer

    National Institute of Standards and Technology, Gaithersburg, MD 20899 USA

    email: [email protected]

  • Motivation and Overview

    In this work:

    In-plane and hemispherically-scanned BRDF (full hemisphere of polar, azimuthal scattering angles)

    Ambient temperature, 405 nm and 658 nm wavelengths

    4 samples, of two graphite types: 7ST-1, 7ST-2, SGL-1, SGL-2

    Seven values of qi (0°, 8°, 15°, 30°, 45°, 60°, 70°)

    Two incident polarizations: s-polarized, p-polarized

    Integrate BRDF to DHR (r)

    Graphite samples measured

    High-Temperature Fixed Point (HTFP) cavities

    Courtesy Y. Yamada

    Potential eutectic reference points: Co-C 1597 K Pt-C 2011 K Re-C 2747 K

    A critical issue is the knowledge of the emissivity of the graphite blackbody radiator cavities. Modeling of the emissivity requires characterization of the reflectance of the graphite walls of the cavity, ideally as a function of incident angle, scattering angle, polarization, wavelength and temperature.

    Example HTFP, Batuello et al., Metrologia 2011

    Heather J. Patrick, NIST, Newrad 2011 2

    Only a subset of the data will be shown!

  • Previous BRDF Models for Monte Carlo Studies

    Heather J. Patrick, NIST, Newrad 2011 3

    (Lambertian diffuse+ non-varying

    specular)

  • Goniometric Optical Scatter Instrument (GOSI)

    Used 405 nm, 658 nm lasers Few millimeter illuminated spot on sample Linearly polarized incident light Power monitor to normalize for source

    fluctuations 5-dof sample positioning for in-plane and

    out-of-plane BRDF

    Heather J. Patrick, NIST, Newrad 2011 4

    Receiver (Ps position)

    Ps

    (Pi position)

    Goniometer with sample

    polarizer

    monitor beamsplitter

    From laser

    Monitor Detector

    Spatial filter/focus

    l/2 waveplate

    Pi

    BRDF D = aperture to receiver A = aperture area qr = scattering polar angle

  • BRDF coordinates

    z is sample normal

    x-z plane is plane of incidence

    Incident polar angle (qi) and polar scattering angle (qr) measured from z

    Azimuthal scattering angle (fi) measured from x

    For in-plane measurements, take negative qr to be scattering with fr = 180°

    Heather J. Patrick, NIST, Newrad 2011 5

    q iq r

    f r x

    y

    zd

  • In-plane BRDF

    405 nm data shown, unpolarized incident light (average of s-pol and p-pol incident results) Graphite BRDF is highly non-Lambertian at high qi, qs

    Not a good fit to uniform specular diffuse models! May be able to adapt GSD model to approximate this behavior

    SGL samples a little less forward scatter enhancement 405 nm and 658 nm show similar trends Grey sample; BRDF values around 10% of pressed PTFE

    Heather J. Patrick, NIST, Newrad 2011 6

    405 nm, graphite

    0.01

    0.1

    1

    -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

    BR

    DF,

    sr-

    1

    qr, degrees

    7ST-1 incident 0 degrees

    7ST-1 incident 45 degrees

    7ST-1 incident 70 degrees

    0.01

    0.1

    1

    -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

    BR

    DF,

    sr-

    1

    qr, degrees

    7ST-1 incident 0 degrees

    7ST-1 incident 45 degrees

    7ST-1 incident 70 degrees

    SGL-1 incident 0 degrees

    SGL-1 incident 45 degrees

    SGL-1 incident 70 degrees

    658 nm, graphite

    0.01

    0.1

    1

    -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

    BR

    DF,

    sr-

    1

    qr, degrees

    7ST-1 incident 0 degrees

    7ST-1 incident 45 degrees

    7ST-1 incident 70 degrees

    SGL-1 incident 0 degrees

    SGL-1 incident 45 degrees

    SGL-1 incident 70 degrees

  • -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0q

    i = 45

    0, s-pol

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.01800

    0.02084

    0.02413

    0.02795

    0.03236

    0.03747

    0.04339

    0.05024

    0.05817

    0.06736

    0.07800

    BRDF, sr-1

    Hemispherically-scanned BRDF - overview

    Hemispherically scanned qr and fr for fixed qi Measured at points evenly spaced in x,y space where

    x = sinqr cosfr y = sinqr sinfr Spacing of x,y eases integration to total directional-hemispherical

    reflectance (DHR)

    Heather J. Patrick, NIST, Newrad 2011 7

    In-plane

    Example: SGL-1 405 nm qi = 45° s-pol incident

    fr = 0° fr = 180°

    r = sinqs

  • Hemispherically-scanned BRDF: example qi = 0°

    Sample 7ST-1, 405 nm “s-pol” electric field along y, “p-pol” electric field along x See preference to scatter perpendicular to electric field (higher BRDF values) Slight asymmetry about x,y may indicate “lay” to surface finish at measured

    point, or surface nonuniformity

    Heather J. Patrick, NIST, Newrad 2011 8

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.01800

    0.01912

    0.02032

    0.02159

    0.02294

    0.02437

    0.02590

    0.02751

    0.02923

    0.03106

    0.03300

    BRDF, sr-1

    qi = 0

    0, s-pol

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0q

    i = 0

    0, p-pol

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.01800

    0.01912

    0.02032

    0.02159

    0.02294

    0.02437

    0.02590

    0.02751

    0.02923

    0.03106

    0.03300

    BRDF, sr-1

  • Hemispherically-scanned BRDF: example qi = 45°

    Sample 7ST-1, 405 nm Much higher BRDF values for s-polarized incident light (note scales are

    not same) Observed asymmetries, more pronounced when looking at p-

    polarization

    Heather J. Patrick, NIST, Newrad 2011 9

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0q

    i = 45

    0, s-pol

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.01500

    0.01822

    0.02214

    0.02689

    0.03267

    0.03969

    0.04821

    0.05857

    0.07115

    0.08643

    0.1050

    BRDF, sr-1

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0q

    i = 45

    0, p-pol

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.018000.019360.020810.022380.024060.025880.027820.029920.032170.034590.037200.04000

    BRDF, sr-1

  • Hemispherically-scanned BRDF: example qi = 70°

    Sample 7ST-1, 405 nm Greatly enhanced BRDF values for s-polarized incident light vs. p-polarized (note scales

    are not same) Unpolarized (averaged) result will be dominated by s-polarization; strong dependence of

    observed BRDF on fr at given qr Observed asymmetries, more pronounced when looking at p-polarization

    Heather J. Patrick, NIST, Newrad 2011 10

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0q

    i = 70

    0, s-pol

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.01400

    0.01913

    0.02614

    0.03573

    0.04883

    0.06672

    0.09118

    0.1246

    0.1703

    0.2327

    0.3180

    BRDF, sr-1

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0q

    i = 70

    0, p-pol

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.01560

    0.01857

    0.02210

    0.02630

    0.03131

    0.03726

    0.04435

    0.05278

    0.06283

    0.07478

    0.08900

    BRDF, sr-1

  • Integrating BRDF to obtain DHR

    For white Lambertian reflector, DHR r = 1

    rrrrrrr ddf fqfqfqr sincos),(DHR from BRDF*

    Variable substitution rrx fq cossin rry fq sinsin

    dxdyyy

    xx

    yxfr fq

    fq

    fqr cossin),(

    1

    since BRDF measured at evenly spaced pts in x,y

    Heather J. Patrick, NIST, Newrad 2011 11

    *ASTM E2387-05, “Standard practice for goniometric optical scatter measurements,” ASTM International, West Conshoken, PA, 2005.

  • DHR, polarization-resolved

    Results for all samples, wavelengths investigated

    Two samples within type (7ST or SGL) show similar trends

    7ST polarization dependence more pronounced (different surface finish?)

    Heather J. Patrick, NIST, Newrad 2011 12

    0.065

    0.075

    0.085

    0.095

    0.105

    0.115

    0.125

    0.135

    0 8 15 30 45 60 70

    r

    qi, degrees

    405 nm, p-polarization incident

    7ST-1

    7ST-2

    SGL-1

    SGL-2

    0.065

    0.075

    0.085

    0.095

    0.105

    0.115

    0.125

    0.135

    0 8 15 30 45 60 70

    r

    qi, degrees

    405 nm, s-polarization incident

    7ST-1

    7ST-2

    SGL-1

    SGL-2

    0.065

    0.075

    0.085

    0.095

    0.105

    0.115

    0.125

    0.135

    0 8 15 30 45 60 70

    r

    qi, degrees

    658 nm, p-polarization incident

    7ST-1

    7ST-2

    SGL-1

    SGL-2

    0.065

    0.075

    0.085

    0.095

    0.105

    0.115

    0.125

    0.135

    0 8 15 30 45 60 70

    r

    qi, degrees

    658 nm, s-polarization incident

    7ST-1

    7ST-2

    SGL-1

    SGL-2

  • DHR, unpolarized incident light

    Results for all samples, wavelengths investigated

    Two samples within type (7ST or SGL) show similar trends

    DHR 0.083 to 0.101 for all samples/wavelengths/incident angles

    Heather J. Patrick, NIST, Newrad 2011 13

    0.08

    0.085

    0.09

    0.095

    0.1

    0.105

    0 8 15 30 45 60 70

    r

    qi, degrees

    405 nm, polarization averaged

    7ST-1

    7ST-2

    SGL-1

    SGL-2

    0.08

    0.085

    0.09

    0.095

    0.1

    0.105

    0 8 15 30 45 60 70

    r

    qi, degrees

    405 nm, polarization averaged

    7ST-1

    7ST-2

    SGL-1

    SGL-2

  • Variation of DHR over surface?

    405 nm DHR for unpolarized incident light, qi = 0° Graphite SGL-2 sample showed ≈ 5% Dr vs. position In contrast, a Spectralon sample showed ≈ 0.3% Dr vs. position Surface non-uniformity of graphite samples plays a role! Surface non-uniformity may also contribute to apparent asymmetries

    in hemispherically –scanned BRDF, as illuminated area expands with qi

    Heather J. Patrick, NIST, Newrad 2011 14

    405 nm, graphite 405 nm, spectralon

    0.09

    0.091

    0.092

    0.093

    0.094

    0.095

    0.096

    0.097

    0.098

    0.099

    0.1

    position 1 position 2 position 3

    DHR, 405 nm, qi = 0°, SGL-2

    0.9

    0.91

    0.92

    0.93

    0.94

    0.95

    0.96

    0.97

    0.98

    0.99

    1

    position 1 position 2 position 3

    Spectralon, 405 nm, qi = 0°, SGL-2

  • Dependence of DHR on scanning range?

    658 nm DHR for unpolarized incident light, qi = 70°, sample 7ST-2 On left, 0.1 spacing x,y grid (typical). On right, 0.05 spacing (accesses

    higher qs) Dr ≈ +6% when spacing decreased (for sample with largest effect) Only affects qi = 70° May need to consider for very non-Lambertian BRDF, highest

    Heather J. Patrick, NIST, Newrad 2011 15

    Typical, 305 pts

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.01500

    0.02169

    0.03137

    0.04536

    0.06560

    0.09487

    0.1372

    0.1984

    0.2869

    0.4149

    0.6000

    BRDF, sr-1

    r = 0.01

    Fine spacing, 1245 pts

    -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    y =

    sin

    qr*

    sin

    fr

    x = sinqr*cosf

    r

    0.01500

    0.02169

    0.03137

    0.04536

    0.06560

    0.09487

    0.1372

    0.1984

    0.2869

    0.4149

    0.6000

    BRDF, sr-1

    r = 0.0106

  • Discussion Graphite samples show strongly non-Lambertian BRDF

    Strong enhancement of forward-scattering, dominated by BRDF from s-pol component of incident light

    DHR from 0.083 to 0.101 calculated from BRDF measurements

    Dependent on qi, polarization, sample type, position on sample Likely also very dependent on exact surface finish

    Hanssen et al. report 0.1 to 0.3 rough-polished at 2 mm wavelength

    Effect on models of emissivity/blackbody temperature? TBD! Plan to adjust models to more appropriately account for BRDF

    measurements – may be able to adapt GSD model to approximate our results Also compare elevated T measurements with these room T results One study showed changing DHR from 0.2 to 0.3 gave ≈ 20 mK change in T –

    but assumed a Uniform Specular Diffuse model. Goals for all source-based components of uncertainty budget 30 mK – 110 mK

    Ability to hemispherically scan BRDF gives more detailed BRDF picture compared to sphere-based and in-plane measurements

    Heather J. Patrick, NIST, Newrad 2011 16

  • Thank you!

    Heather J. Patrick, NIST, Newrad 2011 17