New Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

39
New Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste Department of Chemistry University of Montreal March 17 th , 2009 William S. Bechara Charette Group Literature Meeting

description

Department of Chemistry University of Montreal March 17 th , 2009. New Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste. William S. Bechara Charette Group Literature Meeting. Outline. General Properties of Gold - PowerPoint PPT Presentation

Transcript of New Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

Page 1: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

New Progress of Gold in Organic ChemistryRecent Contribution of F. Dean Toste

Department of Chemistry University of Montreal

March 17th , 2009

William S. Bechara

Charette Group Literature Meeting

Page 2: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

2

Outline

• General Properties of Gold

• Particularities and advantages of Gold in Homogeneous Catalysis

• Relativistic effects of Gold (Quantum Chemistry studies)

• Examples of the Relativistic Effect

• Initial Tryouts with Gold in Organic Chemistry

• Contribution of F. Dean Toste in Homogeneous Gold(I) Catalysis

• Mechanistic Studies

• Applications in Total Synthesis

Page 3: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

3

General Properties of Gold

• Oxidation States : Au-I to AuIII and AuV but AuI and AuIII dominate.

• Electronegativity : Au 2.54 (~highest electronegativity of all metals)

• Industrial use : medicine, dentistry, electronics, jewelry, food, etc good resistance to

oxidative corrosion, good conductor of heat and electricity, ductile, malleable….

• Organic Chemistry : heterogeneous and homogeneous catalysis (Au0) (AuI and AuIII)

AuI AuIII

Linear Square Planar

Au : [Xe] 6s1 4f14 5d10

J. Phys. Chem. A, 2006, 110 , 11332

Page 4: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

4

Advantages of Gold in Organic Chemistry

• Most reactions catalyzed by Au can be done without precautions to exclude air

and humidity (sometimes done in water or MeOH).

• Gold catalysts can be used for heterogeneous and homogeneous catalysis.

• Relatively fast reactions.

• Good potential to stabilize cationic reaction intermediates.

• Versatile Lewis Acid Gold species can activate various substrates, specially

unsaturated molecules. e. g. alkynes, alkenes, allenes, diynes, allenynes,

enynes...

• A wide array of nucleophiles can be added to the activated substrates in an

intramolecular or intermolecular fashion. e.g. O, N, C, F, S.

F. Dean Toste Nature, 2007, 446, 395F. Dean Toste J. Am. Chem. Soc., 2008, 130, 4517Hashmi Angew. Chem. Int. Ed. 2005, 44, 6990

Page 5: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

5

Particularities of Gold in Homogeneous Catalysts

• Gold catalysts are considered as soft and mostly carbophilic Lewis acid.

• Au(I) complexes are known to activate C-C -bonds towards nucleophilic

addition.

• Au(III) can also complex carbonyls and other heteroatoms (e.g. N, O, S)

• Au(I) species are not nucleophilic (relative to the copper complexes).

• Gold catalysts have a low propensity for β-H elimination and reductive

elimination.

• Au(I) and Au(III) complexes do not readily cycle between oxidation states in the

catalysis. Difficult for cross-coupling.

• Au(I) can pass through a cationic intermediate and a carbenoid species in the

reaction mechanism.

• Strong relativist effect. Relativistic effects are crucial to understanding the

electronic structure of heavy elements.F. Dean Toste Nature, 2007, 446, 395P. Pyykko Angew. Chem. Int. Ed. 2004, 43, 4412 F. Dean Toste Chem. Rev., 2008, 108 , 3351

Page 6: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

Relativistic Effect of Gold

• Relativistic Quantum chemistry describes the electron dynamics, chemical bonding and

particularly the behaviour of the heavier elements of the periodic table (specially the

elements in which the 4f and 5d orbitals are filled), aurophilicity (strong Au-Au interaction),

etc.

• It describes that Gold has a relativistic contraction of the 6s and 6p orbitals and an expansion

of the 5d orbitals. This correspond to a lowering of the lowest unoccupied molecular orbital

(LUMO) and therefore a strong Lewis acid.

• It also results in greatly strengthened Au–L bonds (which can induce high chirality).

• Different oxidation state influences the activity of the catalyst.

79Au78Pt

77Ir73Ta

80Hg

76Os

81Ti

82Pb

Contraction of 6s and expansion of 5d orbitals

6

6s 4f 5d

Au:

F. Dean Toste Nature, 2007, 446, 395 , P. Pyykko Angew. Chem. Int. Ed. 2004, 43, 4412

Page 7: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

7

Influence of Oxidation States

• Gold(I) and (III) can furnish different regioisomers :

• Gold(III) catalyses the reaction

by activating the ketone.

• Gold(I) catalyses the reaction

by activating the allene.

O n-Oct

Br

O

O

H

Br n-Oct

[Au]

Br n-OctO n-Oct

Br[Au]

O

Br

H n-Oct

AuCl3 (2 mol%)

PhCH3

Et3PAuCl (2 mol%)

PhCH3

O

[Au]

Br n-OctH

hydride shift

O n-Oct

Br

[(III)Au]

Br

O n-Oct[(III)Au]

< 1: 9995 : 5

V. Gevorgyan J. Am. Chem. Soc., 2005, 127, 10500F. Dean Toste Nature, 2007, 446, 395

Page 8: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

8

Initial tryouts with Gold in Organic Chemistry

• First attempts using gold catalysis was mainly for oxidations :

• Au(III) species

NH2

R2R1

HAuCl4 (0.3-0.5 eq)

H2O, NaOH (pH~6)

O

R2R1

9 - 72%

SR2R1

Bu4N(AuCl4) (5 mol%)

MeNO2, HNO3 10%S

O

R2R1

76 - 97%

R1, R2 = alkyl

R1 = alkylR2 = aryl or alkyl

J. Org. Chem., 1976, 41, 2742 Tetrahedron 1983, 39, 3181

Page 9: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

9

Contribution in Homogeneous Gold Catalysis

• Dean was born in 1971 in Azores, Portugal and soon moved to Canada. He majored in Chemistry and obtained a M.Sc. in Organic Chemistry at the University of Toronto with Prof. Ian W. J. Still. He then pursued his Ph.D. with Barry Trost at Stanford and a post-doctoral appointment with Robert Grubbs at Caltech. Dean is currently an Associate Professor of Chemistry at UC Berkeley.

• His main research interest is the Gold(I)-Catalyzed C-C Bond Formation.

• Published around 30 publications (~25 JACS) just on Gold chemistry in the past 5 years.

Prof. F. Dean Toste

Around 10 reviews on gold chemistry in the past few years (2 by Toste).

Page 10: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

10

Conia-Ene Reaction of -Ketoesters with Alkynes

OR2

O

R1

O

O

R1

R2OO

R3R4

R5

R3

R4

R5

O

R1

R2OO

Ph3PAuCl (1-5 mol%)AgOTf (1-5 mol%)

CH2Cl2, rt, 15min - 24h

O

Me

MeOO

O

Me

MeOO

O

Me

MeOO

O

Me

MeOO

Et PhPh

n-Pr

R1 = Me, R2 = Me 94%R1 = Ph, R2 = Et 93%R1 = Me, R2 = t-Bu 81%R1 = Me, R2 = CH2CCH 79%

95% (17:1) 86% (4.2:1) 96% (4:1) 97% (2.9:1)

H

CO2Me

OOOO

H R3

CO2R2CO2Me

H

CO2Me

O

O

H

CO2Me

99%86%R2 = Et, R3 = H 90%R2 = Me, R3 = Me 83%

88%n = 1 90%n = 2 90%

n

F. Dean Toste J. Am. Chem. Soc., 2004, 126 , 4526

Page 11: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

11

Proposed Mechanism

Au

D

OH

Me

Au+

O

Me

Au+

CO2Me

CO2Me

OMe

O

Me

O

Au

AcMeO2C

AcMeO2C

AcMeO2C

H+

H+

A

B

OMe

O

Me

O

O

Me

DH

MeOO

O

Me

HD

MeOO

Ph3PAuOTf

H

H

OMe

O

Me

O

Ph3PAuOTf

D

X

O

Me

DAu

MeOO

via in both cases

Syn

Anti

F. Dean Toste J. Am. Chem. Soc., 2004, 126 , 4526

Page 12: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

12

Allenyne Cycleisomerisation – Activated Ene Reaction

Me

Me

Me

n

n

[(Ph3PAu)3O]BF4 (1-5 mol%)

CHCl3, 60oC, 6-48h

Me

R1

R2

R3

R4

R1

R2

R4R3

H

H

H

Me

H

H

Bn

Me

H

Ph

H

Me

H

CO2Me

CO2Me

H H

H H

Me

CO2EtCO2Et

H

H

HMe

Ph

H

H

HPh

Me

2.4 1

7:1Z:E +

84% 88% 89% 99% 40%

64% 78% 70% 70%cis trans

F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Page 13: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

13

Mechanistic Studies – Ene Type Reaction

D3C

Me

CD3Catalyst

+

DH2C

DH2C

Me

D

DD

CH2DCatalyst

+

CH2D

D

DDD

D

Me

Me

D3C

D3C

BnPMP+

Me

+

CD3

D

DDH

BnPMP

Catalyst

Me

Me

Me

H

Me

H

Intramolecular proton transfer

F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Page 14: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

14

Mechanistic Studies

Me

Me

Me

H

Me

H

Me

Me

PPh3Au

Ph3PAu

MeMe

H

Me

MeH

AuPPh3

Ph3PAu

MeMe

PPh3Au

PPh3Au

AuPPh3

MeMe

Me

Me Me

MePh3PAu

Me

Me

Ph3PAu

PPh3Au

AuPPh3

Me

Me

AuPPh3

PPh3Au

A B C D E

F G H I

MonoGold

Phosphine

DualGold

Phosphine

Ene Reaction Metallacycles Vinylidenes -Coordinations

F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Page 15: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

15

Mechanistic Studies

Me

Me

PPh3Au

A

Me

Me

Bn

H

LDA, THF, -78oC

then Ph3PAuCl Me

Me

Bn

PPh3Au

CHCl3, 60oCNo reaction

F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Page 16: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

16

Mechanistic Studies

F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Me

Me

Au

Me

HAuPPh3

OxidativeAddition

-HydrideElimination

Ph3PAu

MeMe

H

ReductiveEliminationH

Ph3P

Me

Ph3PAu

MeMe

H

Me

Me

AuPPh3

Computational

Energy Minimization

Ph3PAu

MeMe

H

Ph3PAu

MeMe

PPh3Au

B F

X X XAuPPh3

• Experimentally :

• Computationally :

Similar computational results for dual phosphine gold intermediate

Metallacycles :

Page 17: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

17

Mechanistic Studies

Me

MeH

AuPPh3

PPh3Au

AuPPh3

MeMe

Me

Me

AuPPh3

PPh3Au

Computational

Energy Minimization

Me

MeH

AuPPh3

PPh3Au

AuPPh3

MeMe

C G

Very unstable by computational energy minimization, hight G+

Vinylidenes :

F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Page 18: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

18

Mechanistic Studies

Formation of unstabilized vinyl cation

Need of concerted C-C bond formation and asynchronous hydrogen transfer to avoid

unstable intermediate.

Very hight activation energy (computational calculus) F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Me

Me

Ph3PAu

Me

Me

Ph3PAu

PPh3Au

D H

H2CMe

Ph3PAu

H

H2CMe

Ph3PAu

HPPh3Au

-Coordinations :

Page 19: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

19

Mechanistic Studies

Intermediate I also approved by computational analysis

Me

Me

AuPPh3

Me

Me

AuPPh3

PPh3Au

E I

Me

MeCatalyst

R

R = PhR = Me

No reaction

Me

Me

Bn

PPh3Au

CatalystMe

Bn

F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Page 20: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

20

Catalytic Cycle

Me

Me

Me

Me

Ph3PAuAuPPh3

Me

Ph3PAuAuPPh3

Me

H

Ph3PAu AuPPh3

Me

C-C Bond formation

1,5-Hydrogen shift

HHH

Catalyst transfer

+

OAuPPh3

AuPPh3

Ph3PAu

-BF4

Me

Me+

OAuPPh3

AuPPh3

Ph3PAu

-BF4

+

OH

AuPPh3

-BF4

Aurophilicity

F. Dean Toste J. Am. Chem. Soc., 2008, 130 , 4517

Page 21: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

21

Synthesis of Benzopyrans

OPivR1

O R2 OR

OPivR1 R2

R

O

OPiv

O

OPivX

O

OPiv

X = Cl 69% 97% ee= Br 60% 94% ee= t-Bu 65% 99% ee= Ph 64% 97% ee= OPh 60% 97% ee

t-Bu

64%98% ee

Ar = Ph 74% 97%eem-MeO-C6H4 78% 99%eep-Cl-C6H4 72% 98%eeo-Me-C6H4 58% 98%ee

O

OPivEt

(R)-MeO-DTBM-BIPHEP(AuCl)2 (5 mol%)AgSbF6 (10 mol%)

MeCN, rt

O

OPiv

Ar Ph Ph Ph

Ph

O

OPiv

Ph

53%99% ee

35%98% ee

44%99% ee

O

OPiv

55%97% ee

O

OPiv

51%97% ee

O

OPiv

49%91% ee

> 95:5, E:Z

F. Dean Toste J. Am. Chem. Soc., 2009, 131 , 3463

Page 22: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

22

Proposed Mechanism

OPivMe

O

PhO

OPivMe

Ph

AuL

OPivMe

O

Ph

AuL

Me

O

Ph

AuL

OPiv

Me

O

Ph

AuL

OPiv

Me

O

Ph

AuL

OPiv

?

Backbonding

1,2-Migration ofpropargyl ester

Nucleophilicattack

Rearrangement of allylic oxonium intermediate

F. Dean Toste J. Am. Chem. Soc., 2009, 131 , 3463

Page 23: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

23

Mechanistic Studies

Inversion of allyl moiety

Me

O

Ph

AuL

OPiv

O

OPivMe

Ph

O

OPiv

Me

AuL

O

OPiv

Me

Ph

Ph

OPivMe

O

O

OPivMe

OPivMe

O

OMe

OMe

O

OPivMe

(R)-MeO-DTBM-BIPHEP(AuCl)2 (5 mol%)AgSbF6 (10 mol%)

MeCN, rt

(R)-MeO-DTBM-BIPHEP(AuCl)2 (5 mol%)AgSbF6 (10 mol%)

MeCN, rt

X

X3,3-rearrangement2,3-rearrangement

1,4-sigmatropic rearrangement

Impossibleinversion

F. Dean Toste J. Am. Chem. Soc., 2009, 131 , 3463

Page 24: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

24

1,3-Dipolar Cycloaddition of Munchnones

O

N

O

RAr

NO O

Ph

+

(S)-Cy-SEGPHOS(AuOBz)2 (2 mol%)PhF (0.5 M)

then TMSCHN2or CH2N2

N

N

Ar

OO

CO2MeR

Ph

N

N

Ph

OO

CO2MeMe

Ph

N

N OO

CO2MeMe

Ph

N

N

Ph

OO

CO2MeH

Ph

N

N

Ph

OO

CO2Me

Ph

N

N

Ph

OO

CO2MePh

Ph

X = p-OMe 77% 95%eep-Br 75% 93%eep-Cl 72% 92%eep-NO2 98% 91%ee

N

N

Ph

OO

CO2MeBn

Ph

N

N OO

CO2Me

Me

Ph

N

N OO

CO2Me

Me

Ph

X MeO

76%95% ee

84%98% ee

86%87% ee

35%78% ee

71%68% ee

77%95% ee

73%86% ee

1.5 equiv.

F. Dean Toste J. Am. Chem. Soc., 2007, 129 , 12638

Page 25: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

25

Proposed Mechanism

H

LAu O

N

O

MePh

O

N

O

MePh

AuL

LAuOBz

OBz

OBz

HOBz

O

N

O

MePh

AuLNO O

Ph

N

O

N

N

Ph

OO

CO2MeMe

Ph

O

Ph

Me

N

O

OPh

HOBz

AuL

Generation of 1,3- dipole1,3-DipolarCycloaddition

F. Dean Toste J. Am. Chem. Soc., 2007, 129 , 12638

Page 26: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

26

Intramolecular Cyclopropanation

R1 OR2

OAc OAc Me OAc

Me OAc Et OAc

n n

R1OR2

MeOAc

HOAc

HOPiv

R3R3

OAc

OO

Me

91%49% ee

49%15% ee

44%85% ee

94%92% ee

91%92% ee

98%90% ee

80%90% ee

96%90% ee

88%75% ee

L*(AuCl)2 (2.5 mol%)AgSbF6 (5 mol%)

MeNO2 (0,1 M), -25oC

F. Dean Toste J. Am. Chem. Soc., 2009, 131 , 2056

Page 27: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

27

Proposed Mechanism

Carbenoid Intermediates

OPiv

OR2

AuPPh3 OPiv

AuPPh3

OPiv

AuPhPh3

1,2-Shift

Backbonding

AuPhPh3

OPiv

SynAnti

Ph

PhOPiv

Ph

Ph

F. Dean Toste J. Am. Chem. Soc., 2009, 131 , 2056

Page 28: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

28

Stereoselective Olefin Cyclopropanation

OR

+

R2

R4

R3

R1

RO

R2R1

R3

R4

Ph3PAuCl (5 mol%)AgSbF6 (5 mol%)

MeNO2, rt

PivO

Ph

AcO

TMS

PivO

C5H11

PivO

O

H

HPivO

H

H

n

PivOPh

Ph

BzOPivO

Ph

HAcO

H

Me

AcO

MeMe

MeMe

74% (6:1)(cis:trans)

62% (1.3:1) 48% (1.3:1) 61% (>20:1) n = 1 68% (>20:1)n = 2 69% (1.2:1)

73% 73% 84% (5:1) 69% (1.2:1) 67%

Cis cyclopropanes – major product

F. Dean Toste J. Am. Chem. Soc., 2005, 127 , 18002

Page 29: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

29

Reaction Mechanism

Ph

OAcLAu

Ph

OAc

AuLLAu

Ph

OAc

AuL

Ph

B

AAuL

H

HH

Ph

OAc

Ph

AuL

H

HPh

H

OAc

Ph

PhOAc

Ph

PhOAc

Ph

Syn

Anti

Ph

OAcHPh3PAuCl (2 mol%)AgSbF6 (2 mol%)

MeNO2, rt

91% ee

PivO

Ph

65% (95:5 cis:trans)0% ee

Z

Z

Z

Z

Complete loss of ee, consistent with the formation of a vinyl gold(I) species

F. Dean Toste J. Am. Chem. Soc., 2005, 127 , 18002

Page 30: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

30

Pyrrole Synthesis – Acetylenic Schmidt Reaction

R1 N3

R2

R3

(dppm)Au2Cl2 (2,5 mol%)AgSbF6 (5 mol%)

DCM, 35oC

HNR1

R2

R3

HNn-Bu n-Bu

HNH n-Hex

HNn-Bu

HN Ph

HN

H

HNn-Bu

Ph

82% 76% 78% 41% 73%

HN

H

HN

H

HN

H

HNH

O

61% 68% 88% 93% 87%MeO

CF3

I

F. Dean Toste J. Am. Chem. Soc., 2005, 127 , 11260

Page 31: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

31

Reaction Mechanism

LAu

N3

R

N

R

N2

LAu

N2

N N2

RLAu

N

RLAu

H

N

RH

NH

R3

1,2-proton shif t

Backbondingstabilises cation

intermediate

F. Dean Toste J. Am. Chem. Soc., 2005, 127 , 11260

Page 32: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

32

Intramolecular Hydroamination of Allenes

R1

R1NHTsR1

R1TsNR2

R2

n

n

R2 R2

Me

MeTsN

Et

EtTsN TsN

TsN TsN

Me

MeTsN

Me

MeTsN

Me Me

Me

MeTsN

Ph Ph

TsN

MeMe

TsNTsN O

O

Me

Me

Et

EtTsN TsN

Me

MeTsN

MeMe

Me

MeTsN

PhPh

Me

MeTsN

(R)-xylyl-Binap(AuOPNB)2 (10 mol%)

DCE

98%99% ee

94%93% ee

90%99% ee

75%83% ee

99%70% ee

99%87% ee

88%98% ee

88%98% ee

76%96% ee

79%98% ee

80%98% ee

88%81% ee

41%74% ee

70%98% ee

70%88% ee

66%97% ee

F. Dean Toste J. Am. Chem. Soc., 2007, 129 , 2452

Page 33: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

33

Cyclization of Silyl Enol Ethers

Ph3PAuCl (10 mol%)AgBF4 or AgOTf (10 mol%)

CH2Cl2 or toluene/H2O or MeOH40oC or 0oC

R1PGO

MeO2C CO2Me

O R1

R2

MeO2CCO2Me

n n

O Me

HMeO2C

CO2Me

R1

R2

MeO2CCO2Me

Me

HMeO2C

CO2Me

OO

R2

OO

TsN

OO H

HMe

O

H

R

Me

O

H

Me

O

H

MeO

H

Me

OS

TsN

78% 80% 77% 91%

75%77% 85% 73% 75% 91%

R1 = H, R2 = H 83%R1 = Ph, R2 = H 83%R1 = Me, R2 = Me 90%

PG = TBS or TIPS

O Me

H

94%

MeO2C CO2Me

I

F. Dean Toste Angew. Chem. Int. Ed. 2006, 45, 5991

Page 34: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

34

Ring Expanding CycloisomerisationEtO2C CO2Et

X

CO2EtEtO2CPh3PAuCl (5 mol%)AgSbF6 (5 mol%)

DCM, rt

CO2EtEtO2C

X

CO2EtEtO2C CO2EtEtO2C CO2EtEtO2C CO2EtEtO2C CO2EtEtO2C

EtO2C CO2Et CO2EtEtO2C

Ph3PAuCl (5 mol%)AgSbF6 (5 mol%)

DCM, rtI

I

91%82%ee

MeCl

Cl

Me

MeMe

I

75% 75% 91% 35% 44% 86%

F. Dean Toste Org. Lett.. 2008, 10, 4315

Page 35: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

35

Proposed Mechanism

F. Dean Toste Org. Lett.. 2008, 10, 4315

EtO2C CO2Et CO2EtEtO2C

LAu

AuL

EtO2CEtO2C

LAu

EtO2CEtO2C

Backbonding

Nazarov-type electrocyclisation

Page 36: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

36

Applications in Total Synthesis

CO2Me HO

H

HO

H

HPh3PAuCl (3 mol%)AgSbF6 (3 mol %)

CH2Cl2, 23oC, 2h87%

O OTBS

OBnI

H

Ph3PAuCl (10 mol%)AgBF4 (10 mol %)

CH2Cl2/MeOH, 40oC95%

O

H

BnO

I O

H

HO

N

Ventricosene

(+)-Lycopladine A

• Ventricosene : Ring Expanding Cycloisomerization

• (+)-Lycopladine A : Cyclisation os Silyl Enol Ether

F. Dean Toste Org. Lett.. 2008, 10, 4315F. Dean Toste Angew. Chem. Int. Ed. 2006, 45, 5991

Page 37: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

37

Conclusion

• Properties and Avantages of Gold in Homogeneous Catalysis

• Relativistic Effects of Gold and Examples

• Applicationd of Gold in Organic Chemistry

• Very Versatile and Useful Catalyst (Hight Yields and ee)

• Large Contribution of F. Dean Toste

• Mechanistic Studies

• Applications in Total Synthesis

Future Work : Further the understanding of Enantioselective and Seteroselective

Mechanisms. (Transition States with Chiral Ligands)

Page 38: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

38

Are Gold Chemicals Expensive???

AuAu Pd Pd

PtPtRhRh AgAg

AuCl

140$

AuCl3

94$

PtCl2

135$

PtCl4

114$

PtCl2(PEt3) 2

149$

PdCl242$

Pd(OAc)2

59$

Pd(PPh3)4

66$

RhCl(PPh3)

98$

RhCl3

438$

Rh2(OAc)4

371$

PPh3AuCl

108$

AgCl

3$

AgF6Sb

12$

AgOTf

6$

TiTi

TiCl2Cp2

2$

TiCl4

0.13$

TiCl3

0.5$

CuCu

CuCl

5$

CuBr2

0.5$

Cu(OTf)4

7$

$/g$/g

$$$$$$

Page 39: New  Progress of Gold in Organic Chemistry Recent Contribution of F. Dean Toste

39

Myths – Does the Chemistry Comes from Gold????

• A very long time ago, the main goal of the alchemists was to produce

gold from other substances, such as lead — presumably by the

interaction with a mythical powerful substance called the philosopher’s

stone. Although they never succeeded in this attempt, the alchemists

promoted an interest in what can be done by reacting different

substances and this apparently laid a foundation for today‘s chemistry.