New Concepts of IR Single- Photon...

27
New Concepts of IR Single- Photon Detectors Yuhwa Lo Yuhwa Lo [email protected] 858-822-3429

Transcript of New Concepts of IR Single- Photon...

Page 1: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

New Concepts of IR Single-Photon Detectors

Yuhwa LoYuhwa Lo

[email protected]

858-822-3429

Page 2: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

OutlineOutlineIR SPADs: Geiger-mode avalanche gain

Nanowire detectors: Phototransistive gain

Id l i l h t d t tIdeal single-photon detector: Both gain mechanisms in one device true PMT-like h t i ti ith hi h IR d t ti ffi icharacteristics with high IR detection efficiency

Summary

Page 3: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

OutlineOutlineIR SPADs: Geiger-mode avalanche gain

Nanowire detectors: Phototransistive gain

Id l i l h t d t tIdeal single-photon detector: Both gain mechanisms in one device true PMT-like h t i ti ith hi h IR d t ti ffi icharacteristics with high IR detection efficiency

Summary

Page 4: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Challenges for Geiger Mode APDsChallenges for Geiger Mode APDs

M t b t d ith hi i itMust be operated with quenching circuitsDifficult to make large array

Dark count and after pulsing

Excess noise and timing jitter

Reliability, degradation, and property drift

Page 5: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Geiger Mode APDsGeiger Mode APDsPassive quenching:q g

Active quenching:

Gated mode operation: Von

Voff

Page 6: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Self Quenching and Self RecoverySelf Quenching and Self RecoveryUse band offsets to form energy barrier “TCB” (transient carrier buffer)Avalanche carriers collect at barrierEm is reduced below Ebr, quenching deviceCarriers slowly escape from barrier, recovering device

Page 7: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Implementing the Self-Quenched SPAD Using B d G E i iBand Gap Engineering

Latticed matched to InP Latticed matched to InP system

absorptio

TCB

multiplican tion

Page 8: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Device Structure and Bandstructure Simulation

p-InP

i-InP Multiplication region

InGaAsP Grading Layern-InP charge layer

InAlAs TCB region

InGaAsP Grading Layer

InAlGaAs Grading Layer

InGaAs Absorption Layer

InP Substrate

Page 9: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Process FlowProcess Flow

Step1: Pattern SiO2

Step2: Mesa Etch

Step3: Polyimide PassivationStep3: Polyimide Passivation

Step4: Metalization

Page 10: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

I-V characteristicsI V characteristics

10-6

10-5

λ =1550nm10um Device

120KDark 160KDark200KLi h

10-7

10 10um Device 200KLight 240KDark 300KDark120KLight

10-9

10-8

rren

t [A

]

120KLight 160KLight 200KDark240KLight

10-10

10

Cu 240KLight

300KLight

40 35 30 25 20 15 10 5 010-12

10-11

-40 -35 -30 -25 -20 -15 -10 -5 0

Bias [V]

Page 11: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

SPAD Characterization Setup

to video monitor

InGaAs

p

InGaAsFPA

1534 nmprobe

Optical Power Monitor

6 dB

to DSO

pbeam

Av=800Nf=1.1dB

6 dBsplitter

to 1 Gsa/s

Detectordie

Vbias

Nf 1.1dB2 GHz 450 MHz

low pass

digitizer

Page 12: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Single Photon Detection Efficiency vs Dark Count

0 12

0.14

0.16 120K 160K 200K240K

10um Deviceλ=1550nm

cien

cy

0.08

0.10

0.12 240Ket

ectio

n Ef

fi

0.04

0.06

le P

hoto

n D

0.0 2.0x106 4.0x106 6.0x106 8.0x106 1.0x1070.00

0.02Sin

gl

Dark Count Rate [Hz]

Poor device passivation causes very high after pulsing rate, limiting the device performancedevice performance.

Page 13: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Self-Recovery Time

70

8010um Device160Ks]

1.0

a.u]

32 0V

40

50

60

160KRecover to 63%

y Ti

me

to 6

3% [n

s

0.6

0.8

rk C

ount

Rat

e [ 32.0V

32.2V 32.4V 32.6V 32.8V

10

20

30

Dev

ice

Rec

over

y

0 0

0.2

0.4

Nor

mal

ized

Dar

31.8 32.0 32.2 32.4 32.6 32.8 33.00

Reverse Bias [V]

0 20 40 60 80 100 1200.0N

Time [ns]

Recovery time decreases rapidly with the overbias (bias aboveRecovery time decreases rapidly with the overbias (bias above breakdown).

Recovery time eventually approaches the carrier (hole) escape timeRecovery time eventually approaches the carrier (hole) escape time as determined by the (valence)band offset (80meV in current design).

Page 14: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Pulse Height Histogram

The avalanche pulse height has very narrow distribution.p g y

The excess noise factor measured by signal intensity at a gain of 5x105-106: 1.001 – 1.003

K.Zhao, A.Zhang,Y.Lo and W.Farr,Applied physics letter 91,2007

The excess noise (by total charge contained in the pulse): ~1.007

Page 15: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

OutlineOutlineIR SPADs: Geiger-mode avalanche gain

Nanowire detectors: Phototransistive gain

Id l i l h t d t tIdeal single-photon detector: Both gain mechanisms in one device true PMT-like h t i ti ith hi h IR d t ti ffi icharacteristics with high IR detection efficiency

Summary

Page 16: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Phototransistive Gain (P-Type)Phototransistive Gain (P Type)

hν1. Without light, NW is depleted of majority carriers due pppp

pppp

to large number of surface states

2. When illuminated, e/h pairs generated in body of NWp p

3. Due to the lateral electric field, minority carriers move to surface and recombine with trapped majority carrier

4 Photogenerated majority carriers are confined to4. Photogenerated majority carriers are confined to the center of the wire and generate photocurrent with applied bias

5 Photocurrent stops when majority carrier recaptured5. Photocurrent stops when majority carrier recaptured at the surface

6. Gain occurs when the lifetime of majority carriers is h l th th i t it ti Gaindc =

τcmuch longer than their transit time. Gaindc tt

Page 17: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Gain vs Doping in the WiresGain vs Doping in the Wires100000

Nga=1e11

1e-6 W/cm2 1e-4 W/cm2

10000 Nga=3e10

1e-6 W/cm21 4 W/ 2

1000

10000 1e-2 W/cm2

Gai

n

1000

1e-4 W/cm2 1e-2 W/cm2

Gai

n

1E14 1E15 1E16 1E17 1E18 1E1910

100

1E14 1E15 1E16 1E17 1E18 1E1910

100

P d i ( 3)P-doping (cm3)

P-doping (cm3)

10000

100000

1000000 Nga=3e11

1e-6 W/cm2 1e-4 W/cm2 1e-2 W/cm2

100

1000

10000

Gai

n

1E14 1E15 1E16 1E17 1E18 1E191

10

P-doping (cm3)

Page 18: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Gain SaturationGain SaturationNga=1e11, Na=4e16

100000g ,

1000010000

Gai

n

10001E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.1 1

Intensity (W/cm2)

Page 19: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Advantages of Top-Down FabricationAdvantages of Top Down FabricationTop-down approach for etching NW’s advantageous for:

Control of geometry (diameter, height, pitch)

Exact placement of wire

Control of exact number per contact

Single crystalline NW

Doping through conventional methods

Page 20: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

NW Fabrication Using Nanoimprintingg p gNanowire diameter: 200 nmPitch: 1 umPhysical fill factor: ~ 3%y

Before etch After etch

Page 21: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Vertical Device FabricationVertical Device Fabrication

2. E-beam pattern Ni dots and RIE/ICP etch (SF6/C4F8)

3. Spin on dielectric(PMGI, PI, SOG)

1. Epi Si wafer

5. Pattern and deposit ITO transparent contact

window

4. Plasma etch to expose wire tips

6. Pattern and deposit Ti/Au contacts

1μm1μm 5μm

Page 22: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Room Temperature PhotoresponseRoom Temperature Photoresponse

50.0n

60.0n

10 NWElectrode spacing 8um390+-50nm Filter

100000

20 0n

30.0n

40.0n

Cur

rent

(A)

Dark 8uW/cm2

80uW/cm2

800uW/cm2

10000

Gai

n0 0 0 1 0 2 0 3 0 4 0 5

0.0

10.0n

20.0n 800uW/cm 8mW/cm2

100

1000

0.0 0.1 0.2 0.3 0.4 0.5Bias (V)

1E7 1E8 1E9100

Absorbed Photon Flux (#/sec)

G@0 5V>35,000G =τc

h

th =I e

η P hν @0.5V ,tth ηQEPopt hν

Page 23: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Photoresponsep

10-10 b

Visible (650nm) response

IR (1550 nm) response

10-11

A)

13

10-12

urre

nt (A

10-14

10-13

84 K 110 K130 K

Pho

tocu

10-16 10-14 10-12 10-10 10-810-15

130 K 150 K

Incident Power (W)Power: net incident power over 1um2 area.

Page 24: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Gain vs Incident PowerGain vs Incident PowerVisible (650nm)

responseIR (1550 nm)

response

104

105

90K 110K130K

W)

aresponse response

10

100

(A/W

)

103

104

150K

nsiv

ity (A

/W

0.1

1

espo

nsiv

ity

82 K110K

101

102

Res

pon

1E-3

0.01Ph

oto

R 110K 130K 150K 170K 200K

10-16 10-15 10-14 10-13

Incident Power (W)

1E-12 1E-11 1E-10 1E-9 1E-81E 3

Incident Light Power per Nanowire (W)

Page 25: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

OutlineOutlineIR SPADs: Geiger-mode avalanche gain

Nanowire detectors: Phototransistive gain

Id l i l h t d t tIdeal single-photon detector: Both gain mechanisms in one device true PMT-like h t i ti ith hi h IR d t ti ffi icharacteristics with high IR detection efficiency

Summary

Page 26: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Comparisons Between SPADs and NW Detectors

Geiger-mode SPADs NW DetectorgAvalanche gain Phototransistor gainBiased above breakdown Low bias √√E t l iti t bi M h l iti t biExtremely sensitive to bias and temperature

Much less sensitive to bias and temperature √√

High detection efficiency √√ Low detection efficiencyHi h i l h d L i l h dHigh single-photon data rate (GHz) √√

Low single-photon data rate (< MHz)

Dark count/after pulsing Less dark count √√√√Lower reliability Higher reliability √√

Can we combine the designs to achieve the merits of both?

That is, to achieve a multiplication gain of 100-1000 and a phototransistor gain of 10-1000 for a net gain of 105-6. This will behave like a PMT with high IR detection efficiency.

Page 27: New Concepts of IR Single- Photon Detectorskiss.caltech.edu/workshops/photon/presentations/lo.pdf · New Concepts of IR Single-Photon Detectors Yuhwa LoYuhwa Lo ylo@ucsd.edu 858-822-3429

Device ConceptDevice Concept

0 V 5 V

InAlAs TCB

NW transistor

InPmultiplication

InGaAs

multiplicationp-i-n

15 V

absorption