New Chapter 11 Polar Coordinates and Conic Sections(1)

21
CHAPTER 11 POLAR COORDINATES AND CONIC SECTION 11.3 Polar Coordinates Coordinate systems are just ways to define a point in space. For instance in the Cartesian coordinate system at point is given the coordinates (x,y) and we use this to define the point by starting at the origin and then moving x units horizontally followed by y units vertically. Instead of moving vertically and horizontally from the origin to get to the point we could instead go straight out of the origin until we hit the point and then determine the angle this line makes with the positive x-axis. We could then use the distance of the point from the origin and the amount we needed to rotate from the positive x-axis as the coordinates of the point. This system is known as the polar coordinate system. It is easier to work with for many problems. In this coordinate system a point in the plane is located in reference to a fixed point O called the origin or pole. Using O as the endpoint, construct an initial ray called the polar axis. Each point P in the polar coordinate system is represented by an ordered pair (r, ). This ordered pair (r, ) is referred to as the polar coordinates of P. r is the directed distance from O to P and the directed angle from the polar axis to the line OP. A point P can be located as follows: (a) Start at the polar axis and rotate through an angle of measure to determine the ray . (b) On the ray move r units from O to locate P. MAT133 Calculus with Analytic Geometry II Page 89

description

Polar Coordinates and Conic Sections

Transcript of New Chapter 11 Polar Coordinates and Conic Sections(1)

PARABOLA

CHAPTER 11 POLAR COORDINATES AND CONIC SECTION11.3Polar Coordinates

Coordinate systems are just ways to define a point in space. For instance in the Cartesian coordinate system at point is given the coordinates (x,y) and we use this to define the point by starting at the origin and then moving x units horizontally followed by y units vertically. Instead of moving vertically and horizontally from the origin to get to the point we could instead go straight out of the origin until we hit the point and then determine the angle this line makes with the positive x-axis. We could then use the distance of the point from the origin and the amount we needed to rotate from the positive x-axis as the coordinates of the point. This system is known as the polar coordinate system. It is easier to work with for many problems. In this coordinate system a point in the plane is located in reference to a fixed point O called the origin or pole. Using O as the endpoint, construct an initial ray called the polar axis. Each point P in the polar coordinate system is represented by an ordered pair (r,

). This ordered pair (r, ) is referred to as the polar coordinates of P. r is the directed distance from O to P and the directed angle from the polar axis to the line OP.

A point P can be located as follows:(a)

Start at the polar axis and rotate through an angle of measure to determine the ray .(b)On the ray move r units from O to locate P.

Example 11.1:Plot the following points in the polar coordinate system.

(a)

(b)

(c)

(d)

This leads to an important difference between Cartesian coordinates and polar coordinates. In Cartesian coordinates there is exactly one set of coordinates for any given point. This means that each point (x, y) has a unique representation. For the polar coordinates this isnt true. In polar coordinates there is literally an infinite number of coordinates for a given point.

Relationship between polar and rectangular coordinates.

x = r cos

y = r sin

A polar equation is an equation whose variables are r and . To convert a polar equation in and r to a rectangular equation in x and y, replace r cos by x, r sin by y and by .

Example 11.2: Replace the following polar equations by equivalent Cartesian equations(a)

Express r = 2sin in rectangular coordinates.

(b)Show that is an equation of a parabola.

To convert a rectangular equation in x and y to a polar equation in rand (, replace x by and y by .

Example 11.1.3: Convert each rectangular equation to a polar equation

(a)

(b)

Homework

Exercise 11.3: 27, 29, 31, 33, 35, 39, 41, 53, 55, 57, 59, 6311.4Graphing in Polar Coordinates

This section describes techniques for graphing equations in polar coordinates.

Graphs of Polar Coordinates

(a)The graph of a polar equation is the set of all points whose polar coordinates satisfy the equation.(b)The method for graphing a polar equation is the point-plotting method.

Step 1: Create the table of values that satisfy the equation.Step 2:Plot the ordered pairs.Step 3:Connect the points with a smooth curve.

Example 11.4.1: Graph each of the following polar equations.

(a)

(b)

(c)

(d)

(e)

Common Polar Coordinate Graphs

Lets identify a few of the more common graphs in polar coordinates. Well also take a look at a

couple of special polar graphs.

Lines

1.

This is a line that goes through the origin and makes an angle of with the positive x-axis. Or, in other words it is a line through the origin with slope of tan .

2.

This is easy enough to convert to Cartesian coordinates to x = a. This is a vertical line.

3.

This converts to y = b and so is a horizontal line.Circles1.

r = a .

This equation is saying that no matter what angle weve got the distance from the origin must be a. This is the definition of a circle of radius a centered at the origin.

2. This is a circle of radius a and center (a,0).

3.This is a circle of radius b and center (0,b) .Cardioids and These have a graph that is vaguely heart shaped and always contain the origin.

11.5Areas and Lengths in Polar Coordinates

Area of a Polar Region

The area problem in Polar Coordinates: Find the area of the region R between a polar curve r = f() and two lines, .

The development of the formula for the area of a polar region parallels that for the area of a region on the rectangular coordinate system. In the polar coordinate system sectors of a circle is used instead of rectangles.

If ) is continuous and non-negative for , then the area A enclosed by the polar curve and the lines is given by

Steps

1.Sketch the region R whose area is to be determined.

2.Draw an arbitrary radical line from the origin to the boundary of the curve.

3.Over what interval of values must vary in order for the radical line to sweep out the region A.

4.The answer in step 3 will determine the lower and upper limits of integration.

Example 11.5.1: Find the area of the region in the first quadrant within the cardiod

In this case we can use the above formula to find the area enclosed by both and then the actual area is the difference between the two.Example 11.5.2: Find the area of the region that is inside the cardiod r = 4 + 4cos and outside the circle r = 6.

Example 11.5.3: Find the area of the region outside the cardiod r = 1 + cos and inside the circle r =sin .

Homework

Exercise 11.5: 9, 11, 12, 14, 15, 1711.6Conic Sections

Objective

Know the names of the conics

The curves that can be obtained by intersecting a cone with a plane are called conics or conic sections. The most important of the conic sections are the circles, the ellipses, the parabolas and the hyperbolas.

A circle is obtained by intersecting a cone with a plane which is perpendicular to the axis and does not contain the vertex.

If the plane is tilted slightly the resulting intersection is an ellipse.

A plane which is tilted further the resulting intersection is a parabola.

If the plane is parallel to the axis but does not contain the vertex, the resulting intersection is a hyperbola.

The study of the conic sections dates back to the ancient Greek geometers. The work was purely geometric and the algebraic formulations were not introduced until the seventeenth century. The four curves have played a vital role in mathematics and its applications. Kepler discovered that the planets revolve around the sun in elliptic orbits. Today, properties of conic sections are used in the construction of telescopes, radar antennas and navigational systems and in determining satellite orbits.

The Parabola

Objectives

Find the equation of a parabola

Discuss the equation of a parabola

Work with parabolas with vertex at (h, k)

Graph parabolas

A parabola is the set of all points in the plane that are equidistant from a given line and a given point not on the line.

All parabolas are vaguely U shaped and they will have a highest or lowest point that is called the vertex. Every parabola has an axis of symmetry and, the graph to either side of the axis of symmetry is a mirror image of the other side. This means that if we know a point on one side of the parabola we will also know a point on the other side based on the axis of symmetry. Intercepts are the points where the graph will cross the x or y-axis.

Terms

(i)focus: the given point

(ii)directrix: the given line

(iii)axis: the line that passes through the focus at right angles to the directrix. The parabola is symmetric about this line.

(iv)vertex: point of intersection of the parabola and the axis.

Equation of the parabola with the vertex at (h, k)

i.

ii.

iii.

iv.

Example 11.6.1: Find the focus and the directrix of the parabola with equation .

Example 11.6.2: Find an equation for the parabola with vertex (1, 2) and focus (4, 2).

Example 11.6.3: Sketch the parabola and label it completely.

Example 11.6.4: Show that the curve is a parabola. Sketch and label it completely.

Homework

Sketch the parabola and label it completely.

1.

2.

3.

Answer

1.Opens in the positive x-direction

2.Opens in the negative y-direction

Vertex:(2, 3)Vertex:((2, (2)

axis:

axis:

focus:

focus:

directrix:

directrix:

3.

Vertex:

Opens in the negative y-direction

axis:

focus: (2, 2)

directrix:

The Ellipse

Objectives

Find the equation of an ellipse

Discuss the equation of an ellipse

Work with ellipses with center at (h, k)

Graph ellipses

An ellipse is the set of all points in the plane, the sum of whose distances from two fixed points is a constant.

Terms(i)foci: the two fixed points

(ii)center: the midpoint of the line segment connecting the foci

(iii)vertices: points of intersection of the ellipse and the line through the foci

(iv)major axis: line that joins the vertices

(v)minor axis: line that is through the center and perpendicular to the major axis

Equation of the ellipse with center at (h, k):

(i)

major axis is parallel to the x-axis

(ii)

major axis is parallel to the y-axis

Example 11.6.5: Sketch the graph of and label it completely.

Example 11.6.6: Graph the ellipse and label it completely.

Example 11.6.7: Sketch the graph of the equation .Homework

Graph each of the following ellipse and label it completely.

1.

2.

3.

4.

5.

Answers

1.Center:origin

2.Center:origin

Major axis:y-axis

Major axis:x-axis

Minor axis:x-axis

Minor axis:y-axis

Foci:

Foci:

Vertices:

Vertices:

Co-vertices:

Co-vertices:

3.Center:(2, 1)4.

4.Center : ((2, 3)

Major axis:parallel to x-axis

Major axis : parallel to y-axis

Minor axis:

Minor axis:

Foci:

Foci :

Vertices:

Vertices:

Co-vertices:

Co-vertices:

5.

Center:(2, (1)

Major axis:parallel to the x-axis

Minor axis:

Foci:

Vertices:

Co-vertices:

The Hyperbola

Objectives

Find the equation of a hyperbola

Discuss the equation of a hyperbola

Work with hyperbolas with center at (h, k)

Graph ellipses

Find the asymptotes of a hyperbola

A hyperbola is the set of all points in the plane, the difference of whose distances from two fixed points is a given positive constant.

Terms:(i)foci: the two fixed points

(ii)center: the midpoint of the line segment joining the foci

(iii)focal axis: the line through the foci. The focal axis also known as the transverse axis.

(iv)conjugate axis: the line through the center and perpendicular to the focal axis.

(v)vertices: the points of intersection of the hyperbola and the focal axis.

Equation of the hyperbola with center at (h, k)

(i)

focal axis is parallel to the x-axis

(ii)

focal axis is parallel to the y-axis

The hyperbola has asymptotes .

The hyperbola has asymptotes .

Example 11.6.8: Sketch the graph of and label it completely.

Example 11.6.9: Sketch the graph of and label it completely.

Homework

Sketch each of the following hyperbola and label it completely.

1.

2.

3.

4.

Answer

1.Focal axis:x-axis2.

Conjugate axis:y-axis

Focal axis

:y-axis

Asymptotes:

Conjugate axis

:x-axis

Vertices:

Asymptotes

:

Foci:

Vertices

:

Foci

:

3.Center:(2, 4)4.Center: ((2, (3)

Focal axis:

Focal axis:

Conjugate axis:

Conjugate axis:

Asymptotes:

Asymptotes:

Vertices:

Vertices:

;

Foci:

Foci:

Homework

Exercise 11.6: 57, 59, 61, 63, 65,

Practice Exercises:15, 17, 19, 21, 47, 49, 51, 53

A = QUOTE

PAGE

_1467556847.unknown

_1467556886.unknown

_1467556905.unknown

_1467556925.unknown

_1467556934.unknown

_1467556944.unknown

_1467556949.unknown

_1467556954.unknown

_1467556956.unknown

_1467556957.unknown

_1467556958.unknown

_1467556955.unknown

_1467556951.unknown

_1467556952.unknown

_1467556950.unknown

_1467556946.unknown

_1467556948.unknown

_1467556945.unknown

_1467556939.unknown

_1467556941.unknown

_1467556943.unknown

_1467556940.unknown

_1467556937.unknown

_1467556938.unknown

_1467556935.unknown

_1467556929.unknown

_1467556932.unknown

_1467556933.unknown

_1467556931.unknown

_1467556927.unknown

_1467556928.unknown

_1467556926.unknown

_1467556915.unknown

_1467556920.unknown

_1467556922.unknown

_1467556923.unknown

_1467556921.unknown

_1467556917.unknown

_1467556919.unknown

_1467556916.unknown

_1467556910.unknown

_1467556912.unknown

_1467556914.unknown

_1467556911.unknown

_1467556908.unknown

_1467556909.unknown

_1467556906.unknown

_1467556895.unknown

_1467556900.unknown

_1467556903.unknown

_1467556904.unknown

_1467556901.unknown

_1467556898.unknown

_1467556899.unknown

_1467556897.unknown

_1467556891.unknown

_1467556893.unknown

_1467556894.unknown

_1467556892.unknown

_1467556888.unknown

_1467556889.unknown

_1467556887.unknown

_1467556866.unknown

_1467556876.unknown

_1467556881.unknown

_1467556883.unknown

_1467556884.unknown

_1467556882.unknown

_1467556878.unknown

_1467556880.unknown

_1467556877.unknown

_1467556871.unknown

_1467556874.unknown

_1467556875.unknown

_1467556872.unknown

_1467556869.unknown

_1467556870.unknown

_1467556868.unknown

_1467556857.unknown

_1467556862.unknown

_1467556864.unknown

_1467556865.unknown

_1467556863.unknown

_1467556859.unknown

_1467556860.unknown

_1467556858.unknown

_1467556852.unknown

_1467556854.unknown

_1467556855.unknown

_1467556853.unknown

_1467556849.unknown

_1467556851.unknown

_1467556848.unknown

_1467556827.unknown

_1467556837.unknown

_1467556842.unknown

_1467556844.unknown

_1467556845.unknown

_1467556843.unknown

_1467556839.unknown

_1467556840.unknown

_1467556838.unknown

_1467556832.unknown

_1467556835.unknown

_1467556836.unknown

_1467556833.unknown

_1467556830.unknown

_1467556831.unknown

_1467556829.unknown

_1467556818.unknown

_1467556823.unknown

_1467556825.unknown

_1467556826.unknown

_1467556824.unknown

_1467556820.unknown

_1467556821.unknown

_1467556819.unknown

_1467556813.unknown

_1467556815.unknown

_1467556817.unknown

_1467556814.unknown

_1467556810.unknown

_1467556812.unknown

_1467556809.unknown