Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

39
Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada

Transcript of Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Page 1: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Neutron reflectometry

Helmut FritzscheNRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada

Page 2: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Outlook

Application/advantages of neutron reflectometry

Theoretical background

Instrumental setup

Experiments:• Photoactive azobenzene films• Hydrogen storage in MgAl films• Element-specific hysteresis curves in ErFe2 / DyFe2 multilayers

Supermirrors (non-polarizing and polarizing)

Page 3: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

What can be measured with neutron reflectometry?

Film thickness (2 – 200 nm):swelling of polymer films due to water uptake film expansion during illumination of photoactive filmsfilm expansion during hydrogen absorptiongrowth of oxide layer

In-plane structures on nm and m scale

Scattering length density profile:profile of absorbed gas/liquidinterdiffusion magnetic structuresmagnetic field penetration into superconductors

Page 4: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Specific advantages of neutron reflectometry

Large penetration depth (for most materials):Buried layersIn-situ measurements (cryostats, cryomagnets, high-pressure cells, furnaces)

Spin and non-spin flip reflectivity:Magnetization reversal, magnetic structure

No diamagnetic background of substrate for ferromagnetic samples:Determination of absolute magnetic moment

High sensitivity to hydrogen:Determine hydrogen profile in hydrogen storage materials

Change of contrast by using isotopes:swelling of films during water (vapor or liquid) uptake (H2O / D2O)expansion of films during hydrogen absorption (H2 / D2)

Page 5: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Reflection and refraction

specularly reflected

refracted

incoming wave

Physical origin:

different index of refraction for two media

medium 1: n1

medium 2: n2

Refraction: Snell‘s law

n1 sin 1 = n2 sin 2

2

1

Reflection:

r = 1

r

Page 6: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Reflection and refraction:the critical angle

reflected

refractedmedium 1: n1

medium 2: n2 90°

c

Critical angle: n1 sin 1 = n2 sin 90° sin c = n2 / n1

For 1 > c : no refracted beam exists, only a reflected beam

Total reflection (100% reflectivity) occurs in the medium with the larger n

Page 7: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Index of refraction for light

For light with = 656 nm:

Material n c (for n2=1)

Vacuum 1.00 -Water 1.33 48.8Quartz glass 1.46 43.2Benzene 1.50 41.8

What is the index of refraction for neutrons?

Note: the index of refraction depends on the wavelength

Page 8: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Index of refraction for neutrons

z

Ez

}Ekin,1

V SLD

Ekin,2

bk

Vm

k

knV

m

k

m

k 2

21

21

222

221

2

12

122

bm

V 22 Fermi’s pseudopotential:

m: neutron mass: neutron wavelengthb: nuclear scattering length: density of atomsb: scattering length density (SLD)

Page 9: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Scattering lengths

X-rays

X-rays: b Z (electron density)

Neutrons

Neutrons: no systematics

Important: not absolute number but contrast of SLX-rays and neutrons are complementary probes

0 5 10 15 20 25 300

10

20

30

40

50

60

70

80

b (f

m)

atomic number

Ne

Ca

H

Fe

CrTi

ArS

Si

Mg

O

CBe

He

Ni

0 5 10 15 20 25 30-5

0

5

10

15

b (f

m)

atomic number

H

D

He

Li

Be

BC

N

O FNe

Na

Mg

AlSi

P

S

Cl

Ar

KCa

Sc

Ti

V

Cr

Mn

Fe

Co

58Ni

Cu

Page 10: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Index of refraction for neutrons:some examples

For neutrons with = 0.237 nm:

Material n b (10-4 1/nm2)

Vacuum 1.00 0Water (H2O) 1.000001 -0.561Si 0.999998 2.073Quartz glass 0.999997 4.185Heavy water (D2O) 0.999994 6.36658Ni 0.999988 13.16

Note: n 1-10-5

The deviation of nneutron from 1 is much smaller than for light,because the interaction of neutrons with matter is much weaker

Page 11: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Reflectometry setup on D3

S1

S2

S3S4

sample

PG filter

analyzer

detector

Focusing PG monochromator

Polarizing supermirror

Spin-down neutrons

spin flipper

Page 12: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Reflectometry setup on D3

S1

S2

S3S4

sample

PG filter

analyzer

detector

Focusing PG monochromator

Polarizing supermirror

Spin-down neutrons

spin flipper

Spin-up neutrons

Page 13: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

The reflectometry experiment

detector

sample

slit system

q2

q: scattering vector: scattering angle

sin4

ir kkq

geometry:sample moves by detector moves by 2

Page 14: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

The reflectometry experiment

detector

sample

slit system

q

Reflectometry:Measuring the reflected intensity as a function of q

Page 15: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Visualization of a reflectivity curve (Si wafer)

z

Ez

refl

ectiv

ity

q

nucbm

V 22 }

qc

b

q ccc sin4

Si: c=0.11º (for =2.37 Å)58Ni: c=0.28º (for =2.37 Å)

Page 16: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Kiessig fringes

A u S i

zd

V

0.00 0.02 0.04 0.06 0.08 0.10

10-5

10-4

10-3

10-2

10-1

100

Ref

lect

ivity

q (Å-1)

Oscillations due to total film thicknessq 1/d

q=2/d

qc

Page 17: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Multilayer Bragg peaks

bilayer Bragg peaks at q=2/t

q = n · 2/62.8 Å-1 = n · 0.1 Å-1

0.00 0.05 0.10 0.15 0.20 0.25 0.301E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

refl

ecti

vity

q (Å-1)

Short period oscillations:Kiessig fringes

Fe

SLD

Cr

Fe

CrSi wafer

Fe

Cr}

Bilayer thickness tt = 32.8 Å + 30 Å = 62.8 ÅIn total: 20 repetitions

•••

Page 18: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Magnetic interaction

magnuc VVV Bbm

22 magnuc bbm

22

Hext: external magnetic fieldB : magnetic inductionµ : magnetic moment of neutrons

Page 19: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

PNR: bulk Fe

0.00 0.05 0.10 0.151E-6

1E-5

1E-4

1E-3

0.01

0.1

1 R+

R-

Runmag

refl

ecti

vity

q (1/Å)

Different reflectivity for spin-up and spin-down neutrons

Determination of the absolute magnetic moment possible

qc- qc

+

Vnuc

BVmag

BVmag

V

spin up (R+) spin down (R-)

Vnuc

Page 20: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

PNR: Fe/Cr multilayers

1 .3 nm C r

M gO (001)

2 .5 nm Fe

x 20

d st ruc

B

H ext

2 .5 nm Fe

1 .3 nm C r

1 .3 nm C r

M gO (001)

2 .5 nm Fe

x 20

d st ruc

B

H ext

2 .5 nm Fe

1 .3 nm C r

d A F

0.00 0.05 0.10 0.15 0.201E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

R+

R-

refl

ecti

vity

q (1/Å)

0.00 0.05 0.10 0.15 0.201E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

R+

R-

refl

ecti

vity

q (1/Å)

Structural peakStructural peak

AF peak

Ferromagnetic coupling:Magnetic period = chemical period

Antiferromagnetic coupling:Magnetic period = 2 x chemical period

Page 21: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

In-situ setup for photoactive films

lenses

shutter mirror

Neutron reflectometry and Laser illumination at the same time

Page 22: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Results for azobenzene films

0.0 h

0.4 h

2.5 h

8.0 h

Laser irradiation time

Smaller q larger film thickness

Page 23: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Co-sputtering of MgAl alloy films

MgAl

Pd

Vacuum Chamber

<100> Si Wafer

Page 24: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Hydrogen absorption

Hydrogen gas cylinderAbsorption cell for thin filmson wafers with up to 100 mm diameter

Page 25: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Hydrogen desorptionequipment

Reflectometry furnace:

Ar atmosphere or vacuum300 K < T < 670 K

sampleheater

thermocouple

Page 26: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Mg0.6 Al0.4 at 298 K

0.00 0.02 0.04 0.06 0.08 0.101E-6

1E-5

1E-4

1E-3

0.01

0.1

1

exp. data simulation

Si / 52 nm Mg0.6

Al0.40

/ 10 nm Pd

Ref

lect

ivity

q (Å-1)

T = 298 K

0 100 200 300 400 500 600 700 8000.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

5.0x10-6

Si / 52 nm Mg0.6

Al0.4

/ 10 nm Pd

SL

D (

Å-2

)

z (Å)

Mg0.6Al0.4PdSiO2

Si

Fit:

Pd: t = 104 Å = 4.4 ÅMgAl: t = 520 Å = 15.7 Å

Page 27: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

0 100 200 300 400 500 600 700 8000.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

5.0x10-6

without hydrogen with hydrogen

Si / 52 nm Mg0.6

Al0.4

/ 10 nm Pd

SL

D (

Å-2

)

z (Å)

Canadian Neutron Beam Centre

Absorption in Mg0.6 Al0.4

• increase of film thickness by about 20%• hydrogen content is 83 at.% = 3.2 weight %

SLDbH < 0

t

0.00 0.02 0.04 0.06 0.08 0.101E-6

1E-5

1E-4

1E-3

0.01

0.1

1 without hydrogen with hydrogen

Si / 52 nm Mg0.6

Al0.4

/ 10 nm Pd

Ref

lect

ivit

y

q (Å-1)

Page 28: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Annealing of a desorbed Mg0.7 Al0.3 film

Pd layer does not exist anymore after 9 h:Pd diffuses into the MgAl layer

0 100 200 300 400 500 600 700 8000.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

5.0x10-6

1 h @ 473 K 3 h @ 473 K 9 h @ 473 K

SL

D (

Å-2

)

z (Å)

0.00 0.02 0.04 0.06 0.08 0.10

1E-5

1E-4

1E-3

0.01

0.1

1

1 h @ 473 K 3 h @ 473 K 9 h @ 473 K

Ref

lect

ivit

y

q (Å-1)

Page 29: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

DyFe2 / ErFe2 multilayer:element-specific hysteresis

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

0H = 6.0 T

q (Å-1)

Ref

lect

ivit

y

1E-4

1E-3

0.01

0.1

1

fit of R- -

fit of R+ +

H = 1.0 T

1E-4

1E-3

0.01

0.1

1

R- -

R+ +

H = 0.4 TMagnetization reversal at 100 KAfter saturation at µ0H = –6 T(6 nm DyFe2 / 6 nm ErFe2)40

0 1 2 3 4 5 6-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

DyFe2

ErFe2

averageM

(T

)

0H (T)

ErFe2 and DyFe2 magnetizations are not parallelDyFe2: easy-axis loopErFe2: hard-axis loop

Page 30: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

PNR is element-specific

ErFe2 DyFe2

R+ = R-

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 T

MErFe2

= 0 T

q (Å-1)

Ref

lect

ivit

y

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 T

MErFe2

= -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 T

MErFe2

= 0.13 T

nonmagnetic layers

Page 31: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

PNR is element-specific

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 T

MErFe2

= 0 T

q (Å-1)

Ref

lect

ivit

y

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 T

MErFe2

= -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 T

MErFe2

= 0.13 T

ErFe2 DyFe2

ErFe2 DyFe2

R+ = R-

~R+ ~R-H

D y F e 2

E rF e 2

nonmagnetic layers

Page 32: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

PNR is element-specific

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 T

MErFe2

= 0 T

q (Å-1)

Ref

lect

ivit

y

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 T

MErFe2

= -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 T

MErFe2

= 0.13 T

ErFe2 DyFe2

ErFe2 DyFe2

R+ = R-

~R+ ~R-H

D y F e 2

E rF e 2

nonmagnetic layers

Page 33: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

PNR is element-specific

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 T

MErFe2

= 0 T

q (Å-1)

Ref

lect

ivit

y

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 T

MErFe2

= -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 T

MErFe2

= 0.13 T

ErFe2 DyFe2

R+ = R-

ErFe2 DyFe2

~R- ~R+

ErFe2 DyFe2

~R+ ~R-H

D y F e 2

E rF e 2

H

D y F e 2

E rF e 2

nonmagnetic layers

Page 34: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

PNR is element-specific

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 T

MErFe2

= 0 T

q (Å-1)

Ref

lect

ivit

y

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 T

MErFe2

= -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 T

MErFe2

= 0.13 T

ErFe2 DyFe2

ErFe2 DyFe2

R+ = R-

~R+ ~R-

ErFe2 DyFe2

~R- ~R+

H

D y F e 2

E rF e 2

H

D y F e 2

E rF e 2

nonmagnetic layers

Page 35: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

supermirror

goal:Extend the range of neutron reflectionbeyond the regime of total reflection

concept:continuous Bragg reflection from a multilayercomposed of bilayerswith a variation of the thickness

realization:Ni/Ti multilayer, bNi = 10.3 fm, bTi = -3.4 fm100 bilayers,qc = 2 x qc, Ni

Page 36: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

supermirror

m-value: m = qc / qc, Ni

Ni

SLD

Ni

Ti Ti Ti

Ni

z

Page 37: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Polarizing supermirror

concept:Using the supermirror concept with a magnetic/non-magnetic bilayerThe SLD of the bilayer is index-matched for spin-down neutronsno multilayer Bragg peaks for down-neutronsSpin-up neutrons show supermirror behavior with extended critical edge

Fe/Co

SLD

spin-up neutrons

Si

Fe/Co

Si

spin-down neutrons

Fe/Co

SLD

Si Fe/Co Si

Index matching

Page 38: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Polarizing supermirror:Fe-Co/Si

0.0 0.2 0.4 0.6 0.8 1.0 1.20

1000

2000

3000

4000

5000

R_down R_up

refl

ecte

d ne

utro

ns (

coun

ts)

(deg)

supermirror 5127u with =0.472 nm

0.0 0.2 0.4 0.6 0.8 1.0 1.20

1000

2000

3000

4000

T_down T_up

tran

smit

ted

neut

rons

(co

unts

)

(deg)

supermirror 5127u with =0.472 nm

Reflected intensity Transmitted intensity

Page 39: Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.

Canadian Neutron Beam Centre

Flipping ratio

0.0 0.2 0.4 0.6 0.8 1.0 1.20

20

40

60

80

100

transmission reflectivity

flip

ping

rat

io

(deg)

supermirror 5127u with =0.472 nm

RR

RRFlipping ratio =

usable range25