Neutron Number N

40
Neutron Number N Proton Number Z 3 / 2 A a A a B S V 3 / 1 ) 1 ( A Z Z a C A Z A a sym 2 ) 2 ( a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry 2 2 3 / 2 ) 2 ( ) ( A Z A A a A a S V sym sym

description

Inclusion of surface terms in symmetry. a sym =30-42 MeV for infinite NM. Proton Number Z. Neutron Number N. Can we determine the density dependence of the symmetry energy?. E( , d) = E(, 0)+ S sym ( ) d 2 Isospin asymmetry : d = ( n -  p )/ ( n +  p ). - PowerPoint PPT Presentation

Transcript of Neutron Number N

Page 1: Neutron Number N

Neutron Number N

Pro

ton

Nu

mb

er Z 3/2AaAaB SV 3/1

)1(

A

ZZaC

A

ZAasym

2)2(

asym=30-42 MeV for infinite NM

Inclusion of surface terms in symmetry

2

23/2 )2()(

A

ZAAaAa SV

symsym

Page 2: Neutron Number N

The National Superconducting Cyclotron Laboratory

@Michigan State University

Isospin Mixing and Diffusion inHeavy Ion Collisions

Betty TsangDresden, 8/2003

Ssym(

Isospin asymmetrynpnp

Can we determine the density dependence of the symmetry energy?

Page 3: Neutron Number N

• Prospects are good for improving constraints further.

• Relevant for supernovae - what about neutron stars?

What is known about the EOS of symmetric matterDanielewicz, Lacey, Lynch (2002)

Page 4: Neutron Number N

The density dependence of asymmetry term is largely unconstrained.

Ssym(

Page 5: Neutron Number N

Measured Isotopic yields

Page 6: Neutron Number N

Isoscaling from Relative Isotope Ratios

Factorization of yields into p & n densities

Cancellation of effects from sequential feedings

Robust observables to study isospin effects

R21=Y2/ Y1

TZTN pne // Zp

Nn ^ ^

Page 7: Neutron Number N

Origin of isoscaling`

Isoscaling disappears when the symmetry energy is set to zero

Provides an observable to study symmetry energy

3/2AaAaB SV 3/1

)1(

A

ZZaC

A

ZAasym

2)2(

R21(N,Z)=Y2 (N,Z)/ Y1 (N,Z)

pn ZNe Zp

Nn ^ ^

Page 8: Neutron Number N

Isoscaling in Antisymmetrized

Molecular Dynamical model

A. Ono et al. (2003)

Page 9: Neutron Number N

Symmetry energy from AMD

(Gogny)>(Gogny-AS)Csym(Gogny)> Csym(Gogny-AS)

Multifragmentation occurs at low density

Page 10: Neutron Number N

EES_fragment

Density dependence of asymmetry energy

S()=23.4(/o)

Results are model dependent

Strong influence

of symmetry term on

isoscaling

=0.36 =2/3

Consistent with many body calculations

with nn interactions

Page 11: Neutron Number N

Sensitivity to the isospin terms in the EOS

Data

Y(N,Z)R21(N,Z)

SMMBUUF1,F3 N/ZP

T Freeze-out source

Asy-stiff term agrees with data better

PRC, C64, 051901R (2001).

~2 ~0.5

Page 12: Neutron Number N

New observable: isospin diffusion in peripheral collisions

• Vary isospin driving forces by changing the isospin of projectile and target.

• Examine asymmetry by measuring the scaling parameter for projectile decay.

ta rg e t

p ro je c tile

symmetric system: no diffusion

weak diffusionstrong diffusion

neutron richsystem

proton richsystem

asymmetric systems

Page 13: Neutron Number N

Isoscaling of mixed systems

Page 14: Neutron Number N

Experimental results

3 nucleons exchange between 112 and 124

(equilibrium=6 nucleons)

Y(N,Z) / Y112+112(N,Z)=[C·exp(N + Z)]

Page 15: Neutron Number N

Experimental results

3 nucleons exchange between 112 and 124

(equilibrium=6 nucleons)

Y(N,Z) / Y112+112(N,Z)=[C·exp(N + Z)]

Page 16: Neutron Number N

The neck is consistent with complete mixing.

Isospin flow from n-rich projectile (target) to n-deficient target (projectile) – dynamical flow

Isospin flow is affected by the symmetry terms of the EoS – studied with BUU model

Page 17: Neutron Number N
Page 18: Neutron Number N
Page 19: Neutron Number N
Page 20: Neutron Number N
Page 21: Neutron Number N
Page 22: Neutron Number N
Page 23: Neutron Number N
Page 24: Neutron Number N
Page 25: Neutron Number N
Page 26: Neutron Number N
Page 27: Neutron Number N
Page 28: Neutron Number N
Page 29: Neutron Number N
Page 30: Neutron Number N
Page 31: Neutron Number N
Page 32: Neutron Number N
Page 33: Neutron Number N
Page 34: Neutron Number N

Isospin Diffusion from BUU

Page 35: Neutron Number N

Isospin Transport Ratio

112112124124

1121121241242

xx

xxxRi

x=experimental or theoretical isospin observablex=x124+124 Ri = 1.x=x112+112 Ri = -1.

Experimental: isoscaling fitting parameter ; Y21 exp(N+Z)Theoretical : )/()( ZNZN

Rami et al., PRL, 84, 1120 (2000)

Page 36: Neutron Number N
Page 37: Neutron Number N

BUU predictions Ssym(

Ssym((

Page 38: Neutron Number N

BUU predictions

Experimental results are in better agreement with predictions using hard symmetry terms

Ssym(

Ssym((

Page 39: Neutron Number N

Summary

Challenge: Can we constrain the density dependence of symmetry term?

Density dependence of symmetry energy can be examined experimentally with heavy ion collisions.

Existence of isoscaling relations Isospin fractionation: Conclusions from multi

fragmentation work are model dependent; sensitivity to S().

Isospin diffusion from projectile fragmentation data provides another promising observable to study the symmetry energy with Ri

Page 40: Neutron Number N

Acknowledgements

P. Danielewicz, C.K. Gelbke, T.X. Liu, X.D. Liu, W.G. Lynch,

L.J. Shi, R. Shomin, M.B. Tsang, W.P. Tan, M.J. Van

Goethem, G. Verde, A. Wagner, H.F. Xi, H.S. Xu, Akira Ono,

Bao-An Li, B. Davin, Y. Larochelle, R.T. de Souza, R.J.

Charity, L.G. Sobotka, S.R. Souza, R. Donangelo

Bill Friedman