Neutrino Physics with Cryogenic...

66
Neutrino Physics with Cryogenic Detectors 1 - Past and present of thermal detectors - Their role in searches for neutrino physics - Hybrid techniques - The impact of the discovery of neutrino oscillation - Present situation of searches on neutrino mass in single beta decay and the role of thermal detectors - The second mystery of Ettore Majorana - Present situation on experiments of neutrinoless double beta decay and the possible impact of thermal detectors in this field - Conclusions September 18, 2009 Ettore Fiorini, Erice 2009

Transcript of Neutrino Physics with Cryogenic...

Neutrino Physics with Cryogenic Detectors

1

- Past and present of thermal detectors

- Their role in searches for neutrino physics

- Hybrid techniques

- The impact of the discovery of neutrino oscillation

- Present situation of searches on neutrino mass in single

beta decay and the role of thermal detectors

- The second mystery of Ettore Majorana

- Present situation on experiments of neutrinoless double

beta decay and the possible impact of thermal detectors

in this field

- Conclusions

September 18, 2009 Ettore Fiorini, Erice 2009

First ideas

1880 => Langley => resistive bolometers for infrrared rays from SUN

1903 => Curie et Laborde => calorimetric measurement of radioactivity

1927 => Ellis and Wuster => heat less then expected => the neutrino

1949 => D. Andrews, R. Fowler, M. Williams => a particle detection

1983 => T.Niinikoski =>observe pulses in resistors due to cosmic rays

1984 => S.H.Moseley et LT detectors for astrophysics and n mass

=> Fiorini and Niinikoski Low temperature detectors for rare events

=> A. Drukier, L. Stodolsky, => neutrino physics and astronomy

2September 18, 2009 Ettore Fiorini, Erice 2009

The cryogenic or thermal detectors

3September 18, 2009 Ettore Fiorini, Erice 2009

Incident

particle

absorber

crystal

Thermal sensor

Excellent resolution <1 eV ~ 2eV @ 6 keV

~10 eV ~keV @ 2 MeV

VC

Q T

J/K )( v

v 1944 C 3

m

V

T

4

Equilibrium detectors

September 18, 2009 Ettore Fiorini, Erice 2009

5

-

- Various types of thermometers

=> a thermistor

=> a transition edge sensor (TES)

=> an Equilibrium Absorber weakly coupled to a heat bath

superconducting tunnel junction (STJ) Cooper pair

breaking

=> a magnetic thermometer . The temperature information is

obtained from the change of a paramagnetic sensor

placed in a small magnetic field

Caveat => possibility that the heat capacity of the thermometerbe comparable or larger than the absorber one:

September 18, 2009 Ettore Fiorini, Erice 2009

6September 18, 2009 Ettore Fiorini, Erice 2009

The first mini-meeting on thermal detectors

(Ringberg castle 1986)

7September 18, 2009 Ettore Fiorini, Erice 2009

8September 18, 2009 Ettore Fiorini, Erice 2009

9September 18, 2009 Ettore Fiorini, Erice 2009

Magnetic sensors

September 18, 2009 10Ettore Fiorini, Erice 2009

Energy resolution of a TeO2 crystal of 5x5x5 cm3 (~ 760 g )

:

0.8 keV FWHM @ 46 keV

1.4 keV FWHM @ 0.351 MeV

2.1 keV FWHM @ 0.911 MeV

2.6 keV FWHM @ 2.615 MeV

3.2 keV FWHM @ 5.407 MeV

(the best a spectrometer so far

210Po a line

11September 18, 2009 Ettore Fiorini, Erice 2009

Non equilibrium detectors

STJ Superconducting tunnel junctions

SSG Superheated superconducting granules . The field does not

enter more in the granule. Often SQUID pickup Suggested for In solar

neutrino detection. Considered for Dark Matter Experiments

=> Superfluid 3He and 4He detectors (rotons) . Also considered for

Solar neutrinos

Comparison with conventional detectors:

=> They measure the total energy delivered (example MARE)

=> Slow propagation of the vibration inside the absorber

Kapitza resistence detector => heat sink (slow rise and decay times)

Possible localizazion of the event (TES)

Excellent detection of nuclear recoil

Possibility of hybrid techniques (heat + ionization and/or scintillation?

Crucial in searches for rare events

12September 18, 2009 Ettore Fiorini, Erice 2009

13

The “grains”°

(operating for Dark Matter and proposed for bb decay)

Superheated Superconducting Granules

September 18, 2009 Ettore Fiorini, Erice 2009

14

Q in n er

Q o u ter

A

B

D

C

Rb ias

I b ias

SQUID array Phonon D

Rfeedb ack

Vq b ias

Hybrid techniques

heat + ionization or heat + scintillation

September 18, 2009 Ettore Fiorini, Erice 2009

15

W

β+γ

α

O

Works with many absorber materials

CaWO4, PbWO4, BaF, BGO

(other tungstates and molybdates)

300g scintillating

CaWO4 crstal

Light detector W thermometer

Light reflector

W thermometer

CRESST@LNGS

scintillation + heat

September 18, 2009 Ettore Fiorini, Erice 2009

16

209Bi considered the only stable isotope of Bi and the stable nucleus with higher Z

A very interesting application of thermal detectors

=> decay of 209Bi

Scintillation and hat experiment in Paris by P.de Marcillac et al with a BGO of 47 g

E 3137 1stat 2syst => 1,9 0.2 x 1019 a

September 18, 2009 Ettore Fiorini, Erice 2009

Planck High angular resolution measurements of the CMB

52 NTD-Ge bolometers 22receivers

September 18, 2009 17Ettore Fiorini, Erice 2009

September 18, 2009 18Ettore Fiorini, Erice 2009

Discovery of n oscillations => mn ≠ 0

19September 18, 2009 Ettore Fiorini, Erice 2009

September 18, 2009 20Ettore Fiorini, Erice 2009

Cosmology

Cosmo-“conservative Cosmo-“aggressive

September 18, 2009 21Ettore Fiorini, Erice 2009

b decay Electron capture

Direct merasurement of the neutrino mass

September 18, 2009 22Ettore Fiorini, Erice 2009

Experiments on tritium decay

September 18, 2009 23Ettore Fiorini, Erice 2009

1 detector

2 magnets (4.5 T

3 vessel

4 Electrode system

5 electron gun

6 valve

KATRIN

September 18, 2009 24Ettore Fiorini, Erice 2009

Direct measurement of the electron mass with cryogenic microcalorimeters

Radioactive source embedded in the

microcalorimeter measured)

All events are detected

Rhenium is the beta isotope with the

lowest known endpoint energy

(2.47 keV)

Experiment (all the energy, except the

neutrino’s, is

187Re => 187Os + e- + ¯n e

MANU: Re single crystal with NTD Ge thermistors

MIBETA: AgReO4 with Si implanted therimostors

END POINT 2465.3±0.5(stat)±1.6(syst) eV

2470±1(stat)±4(syst) eV

HALF LIFE 4.32±0.02(stat)±0.01(syst) 1010 yrs

4.12±0.02(stat) ±0.11(syst)1010 yrs

MASS mn < 15 ev/c2

mn < 26 ev/c2September 18, 2009 25Ettore Fiorini, Erice 2009

The full MARE experiment is still in the R&D phase and

multiple options are being evaluated.

In particular:

TECHNOLOGYISOTOPE

163Ho187Re TES MagCal

Microbolometer Array for Renium Experiment

September 18, 2009 26Ettore Fiorini, Erice 2009

27

Al K

a

Cl K

a

Ca K

aC

a K

b

Ti K

aT

i Kb

Mn K

aM

n K

b

Top85 mK

E = 33 eV@ 2.6 keV

tR ~ 500 ms

Araldit / ST2850

calibration spectrum

September 18, 2009 Ettore Fiorini, Erice 2009

MARE Genoa

September 18, 2009 Ettore Fiorini, Erice 2009 28

300 mm

The first phase of MARE-1 in Milan is getting ready to start at the end of September with 72channels

With 72 channels a sensitivity on neutrino mass of about 5 eV can be achieved in two years

can be made

MARE Milan

Few events in the extreme energy region

September 18, 2009 29Ettore Fiorini, Erice 2009

• Direct neutrino mass determination with

0.1-0.2 eV accuracy

• Beta Decay of 187Re with cryogenic

microcalorimeters

• TES coupled to Re absorber

• 1014 event, requiring 10,000-50,000

detectors

THE MARE II EXPERIMENT

September 18, 2009 30Ettore Fiorini, Erice 2009

September 18, 2009 31Ettore Fiorini, Erice 2009

0 500 1000 1500 2000 2500

100

101

102

103

104

Q=2580 eV

Q=2300 eV

Sig

na

l /

a.u

.

O1

N2

N1

M2

E / eV

M1

• finite neutrino mass causes a kink at the end-point similarly to beta

spectra

2577.0 2577.5 2578.0 2578.5 2579.0 2579.5 2580.0

0

2

4

6

8

M1

mn=0 eV

Sig

na

l /

a.u

.

E / eV

M1

mn=2 eV

M2, Ni, Oi

(i=1,2)

eDyeHo n *163163

September 18, 2009 32Ettore Fiorini, Erice 2009

Relic neutrinos

September 18, 2009 33Ettore Fiorini, Erice 2009

34

What about the nature of the neutrino and its mass?

The second mystery of Ettore Majorana

September 18, 2009 Ettore Fiorini, Erice 2009

→ →

<= =>Majorana=>1937

Neutrinoless double beta decay and Majorana neutrinos

RIGHT

LEFT

n:

n:

35September 18, 2009 Ettore Fiorini, Erice 2009

36September 18, 2009 Ettore Fiorini, Erice 2009

37September 18, 2009 Ettore Fiorini, Erice 2009

u e -

d

d

e -W

u

ne

ne

2n - bb decay

W

0n - bb decay

e -

e -

d

du

u

W

Wen

en

Neutrinoless bb decay

38September 18, 2009 Ettore Fiorini, Erice 2009

Predictions from oscillations

39

disfavoured by -0

disfa

vo

ure

d b

y co

smo

log

y

m2

atm < 0

m2

atm > 0

next generation -0exp

degeneration: m1 ≈ m2 ≈ m3

inverse hierarchy: m3 « m1 ≈ m2

normal hierarchy: m1 ≈ m2 » m3

⟨m

⟩[e

V]

lightest neutrino mass [eV]

A.Strumia and F.Vissani.: hep-ph/0503246

<mn> = f( mlow,Uek )

September 18, 2009 Ettore Fiorini, Erice 2009

40

Claim of Evidence for 0nbb in 76Ge

Single-site events in detectors 2, 3, 4, 5 (56.6 kg-y).H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. E17, 505 (2008)

<m> ~ 0.2 to 0.3 eV

Looks good to me…not to me (E.F.)

September 18, 2009 Ettore Fiorini, Erice 2009

Experiment Nucleus Detector

NEMO III 100Mo et al 10 kg of enrich. Isotopes -tracking

Cuoricino130

Te + etc. 40 kg of TeO2 bolometers (nat)

CUORE130

Te + etc. 750 kg of TeO2 bolometers (nat)

EXO 136Xe 200kg - 1 t Xe TPC

GERDA 76Ge 30 Š 40 kg Š 1t Ge diodes in LN

Majorana76

Ge 180 kg - 1t Ge diodes

MOON100

Mo nat.Mo sheets in plastic sc.

DCBA150

Nd 20 kg Nd-tracking

CAMEO 116Cd 1 t CdWO4 in liquid scintillator

COBRA 116Cd , 130Te 10 kg of CdTe semiconductors

Candles 48Ca Tons of CaF2 in liquid scintillators

GSO 116Cd 2 t Gd2SiO5:Ce scintill.in liquid sc.

Xe136

Xe 1.56 Xenon in liquid scintillator.

Xmass 136Xe 1 t of liquid Xe

MOON

GERDA

EXO

CUORICINO

2P1/2

4D3/22S1/2

493 nm650 nm

metastable 47s

Experimental situation

41

CUORE

SNO++

MOON

NEMO - SuperNEMO

September 18, 2009 Ettore Fiorini, Erice 2009

Double beta decay with thermal detectors

42

Searches for the 2b decay in 130Te (Q=2529 keV and 34% i.a.)

A series of experiments carried out first by the Milano group and later by

the CUORICINO and CUORE collaboration

Mibeta (Milano only) an array of 20 TeO2 bolometers of 320 g

=> total mass 6.8 kg

CUORICINO (CUORICINO Coll.) 44 crystals of 150 g and 18 of 320

(4 enriched)n => total mass 40.7 kg

CUORE (CUORE coll) 988 crystals of 750 g

=> total mass 741 kg

September 18, 2009 Ettore Fiorini, Erice 2009

Searches in the

LNGS

Cuoricino (Hall A)

CUORE (Hall A)

CUORE R&D (Hall C)

43September 18, 2009 Ettore Fiorini, Erice 2009

year

tota

l m

ass [kg

]

44September 18, 2009 Ettore Fiorini, Erice 2009

Mass increase of bolometers

11 modules, 4 detector each,

crystal dimension 5x5x5 cm3

crystal mass 790 g

4 x 11 x 0.79 = 34.76 kg of TeO2

2 modules, 9 detector each,

crystal dimension 3x3x6 cm3

crystal mass 330 g

9 x 2 x 0.33 = 5.94 kg of TeO2

45

At Hall A in the Laboratori Nazionali del Gran Sasso (LNGS)

18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3 = 40.7 kg of TeO2

Operation started in the beginning of 2003

Background .18±.01 c /kev/ kg/ a

CUORICINO

September 18, 2009 Ettore Fiorini, Erice 2009

46

CUORICINO

September 18, 2009 Ettore Fiorini, Erice 2009

Change of the measured value of E

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

With ~ 18 kg x a 130Te e E ~ 2527 keV

=> t1/2 < 2.94 x 1030

2527.01 ± 0.32 keV

2527.518 ± 0.013 keV

With 15.53 kg x a of 130Te and E = 2530.30 +/- 1.99 keV

=> t1/2 < 3.1 x 1030

47September 18, 2009 Ettore Fiorini, Erice 2009

48

Klapdor .1-.9

September 18, 2009 Ettore Fiorini, Erice 2009

Cosmological disfavoured

region (WMAP)

Direct hierarchy

m212= m2

sol

Inverse hierarchy

m212= m2

atm

“quasi” degeneracym1 m2 m3

With the same matrix elements the

Cuoricino limit is 0.53 eV

Possible evidence

(best value 0.39 eV)

49

Present Cuoricino region

September 18, 2009 Ettore Fiorini, Erice 2009

50September 18, 2009 Ettore Fiorini, Erice 2009

The CUORE collaboration

51September 18, 2009 Ettore Fiorini, Erice 2009

52September 18, 2009 Ettore Fiorini, Erice 2009

53

The crystals

September 18, 2009 Ettore Fiorini, Erice 2009

SICCAS/INFN Clean Room

September 18, 2009 54Ettore Fiorini, Erice 2009

September 18, 2009 Ettore Fiorini, Erice 2009 55

56

Growing and lapping at SICCAS

Order for 63 cristals 4 crystals by flight => OK Order for 500 crystals INFN 26 (2 being tested) + 32+36 Agreement prepared for 500 crystals DOE Crystals are arriving at a rate of 30 crystals per month In a year all INFN crystals produced. => Validation of the DOE ones

Packaging

September 18, 2009 Ettore Fiorini, Erice 2009

57September 18, 2009 Ettore Fiorini, Erice 2009

dis

favo

ure

d b

y c

osm

olo

gy

11-576.5 × 1026510-3

19-1002.1 × 1026510-2

<mn> [meV]T1/2 [y]

[keV]b (counts/keV/kg/y)

11-576.5 × 1026510-3

19-1002.1 × 1026510-2

<mn> [meV]T1/2 [y]

[keV]b (counts/keV/kg/y)

Strumia A. and Vissani F. hep-ph/0503246

In 5 years:

58

CUORE expected sensitivity

September 18, 2009 Ettore Fiorini, Erice 2009

59

The earthquake

0.64 g =>center of

L’Aquila

0.29g =>outside

laboratory

0.03 g inside

September 18, 2009 Ettore Fiorini, Erice 2009

Compound Isotopic abundance Transiton energy

48CaF2 .0187 % 4272keV

76Ge 7.44 " 2038.7 "

100MoPbO4 9.63 " 3034 "

116CdWO4 7.49 " 2804 "

130TeO2 34 " 2528 "

150NdF3150NdGaO3 5.64 " 3368“

Other possible candidates for neutrinoless DBD

60

The future

September 18, 2009 Ettore Fiorini, Erice 2009

61

*Maybe Cherenkov light T.Tabarelli de Fatis – Milano-Bicocca

Scintillation* + heat

(in coincidence)

September 18, 2009 Ettore Fiorini, Erice 2009

62

First scintillating bolometer (1991)

CaF2

September 18, 2009 Ettore Fiorini, Erice 2009

September 18, 2009 Ettore Fiorini, Erice 2009 63

Already tested different scintillating crystals

(CdWO4, CaF2, CaMoO4, SrMoO4, PbMoO4, ZnSe,

…).

With some of them we have obtained excellent results

(for example CdWO4, CaMoO4 and ZnSe).

CdWO4: 508g

ZnSe:337 gCaMoO4: 157g

September 18, 2009 Ettore Fiorini, Erice 2009 64

724 hours

Background CdWO4 3x3x6 (426 g) – Scatter

Plot (724 hours)

180W

238U

234U

210Po

230Th

228Th

224Ra

220Ra

216Po

232Th

212Bi

212Bi

212Po

September 18, 2009 Ettore Fiorini, Erice 2009 65

Background CdWO4 3x3x6 (426 g) –

Beta Spectrum

113Cd

(i.a.= 12.2 %)

Qβ = 318 keV

CONCLUSIONS

Thermal detectors operating at low temperature (10-10 mK) had a great

development in the last twenty years

In many fields of physics (e.g.low energy nuclear physics, X-ray

spectroscopy, material sciences , even environmental physics etc) they have

not yet sufficiently exploited

Their long rise and decay time not a problem for searches on rare events

in non accelerator physics (see however their role in accelerator like DESY)

They offer a wide choice of source or target nuclei.

The possibility of hybrid employ association with detector of ionization

and/or scintillation => formidable tool in searches for direct interaction of

WIMPS

In experiments on bb decay especially in its neutrinoless channel they are

already competitive with other detector. This property will be further

enhanced by the use of scintillation and /or ionization in coincidence

Their multidisciplinary nature => exiting and exellent for learning

66September 18, 2009 Ettore Fiorini, Erice 2009