NEURAL CORRELATES OF VOCAL PITCH REGULATION IN SINGING J EAN M ARY Z ARATE Dept. of Neurology &...

43
NEURAL CORRELATES OF VOCAL PITCH REGULATION IN SINGING JEAN MARY ZARATE Dept. of Neurology & Neurosurgery McGill University

Transcript of NEURAL CORRELATES OF VOCAL PITCH REGULATION IN SINGING J EAN M ARY Z ARATE Dept. of Neurology &...

NEURAL CORRELATES OFVOCAL PITCH REGULATIONIN SINGING

JEAN MARY ZARATE

Dept. of Neurology & NeurosurgeryMcGill University

INTRODUCTION

Precise vocal pitch regulation necessary for speech and song

Vocal pitch regulation requires integration between: Stable vocal motor system Auditory feedback Interface between these two components not well-understood

Used singing to find neural substrates for audio-vocal integration

Elicit learned vocalizations

Initiatevocalizations

EXP 1: Experience-dependent neural substrates involved in vocal pitch regulation (Zarate & Zatorre, 2008)

12 non-musicians (6 ♀), 12 singers (6 ♀)

HYPOTHESES: SIMPLE: basic network for singing (Perry et al., 1999) IGN: ↑ attention areas, ↓ auditory cortical activity COMP: audio-vocal integration = ACC, STG, insula?

Singers: Singing tasks: singers > non-musicians Experience-dependent modulation in basic network for

singing, audio-vocal integration

x = 0

ACC

SMATh

Cbl

y = -14

M1

PAC/STG

z = 0

STG/INS

6.1

2.5

SIMPLE – PERC (SINGER ∩ NON-MUS)SIMPLE

-175-150

-125-100

-75

-50-25

025

50

75100

125

150

NON-MUSSINGER

D# C#BG#F

* *b *b

erro

r (c

ents

)

IGNORE

-250

255075

100125150175200225250275300

D# C#BG#F

INCORRECT

! !!!!

re

sp

on

se

ma

gn

itu

de

(ce

nts

)

NON-MUSSINGER

4.0

2.0y = -22

PT/STG

STS

IGN – SIMP (SINGER > NON-MUS)

COMPENSATE

-250

255075

100125150175200225250275300

D# C#BG#F

CORRECT

re

sp

on

se

ma

gn

itu

de

(ce

nts

)

NON-MUSSINGER

4.4

2.4SIN

GE

R >

NO

N-M

US

x = -10

RCZa

x = 50

pSTS

3.7

2.0NO

N-M

US

> S

ING

ER

z = 68

dPMC

COMP – SIMP (GROUP DIFF)

IGN: non-mus had pitch-shift responses Pitch-shift response = vocal stabilization system Training needed to suppress stabilization

Audio-vocal integration:Non-mus: dPMC (sensorimotor association)Singers: RCZa, pSTS

EXP 1: KEY FINDINGS

EXPERIMENT 2: Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers (Zarate et al., submitted)

9 singers (6 ♀) SIMPLE; IGN/COMP 200c and 25c pitch shifts

COMP200c = voluntary vocal pitch regulation Pitch-shift response in IGN25c = PAG?

Unable to verify role of PAG due to temporal resolution limitations of fMRI

EFFECTIVE CONNECTIVITY: IGN200 (vs. SIMPLE)pSTS seed

EFFECTIVE CONNECTIVITY:COMP200 (vs. SIMPLE)

pSTS seed

FUNCTIONAL CONNECTIVITY: COMP200

EXP 1 & 2: RCZa, pSTS, anterior insula Recruited after vocal training Functionally connected to each other pSTS interacts with IPS to monitor feedback

EXP 3: Training effects in non-musicians (Modulation of functional network for singing after auditory training) Better auditory skills = better vocal accuracy? Better vocal accuracy modulations in singing networks Melodies:

Singing tasks: 50c & 100c melodies, simple singing Perception: micromelody discrimination (<100c interval)

PRE-TRAINING

30

40

50

60

70

80

90

100

110

TRAINEDCONTROL

5c 60c20c15c10c 40c30c

interval

per

cen

t co

rrec

t (%

)

POST-TRAINING

30

40

50

60

70

80

90

100

110

TRAINEDCONTROL

15c5c 60c20c10c 40c30c

interval

per

cen

t co

rrec

t (%

)

*****

SIMPLE PERFORMANCE(BEHAVIORAL SESSIONS)

0

10

20

30

40

PRE POST

*

pit

ch

va

ria

bil

ity

(c

en

ts)

FUNC. CONNECTIVITY(POST – PRE)right PT seed

EXP 3: CONCLUSIONS

Short-term auditory training training effects with micromelody discrimination no training effects on vocal production no neural modulations specifically induced by

training-enhanced vocal production

Dissociation between perceptual and production skills? different time-courses of behavioral

improvement auditory-motor training necessary

Consolidated after adequate audio-vocal training

Short-term auditory training does not engage or consolidate network

ACKNOWLEDGMENTSRobert J. Zatorre

Advisory Committee:D. Louis CollinsAlan EvansDavid Ostry

McGill / MNI:Pierre AhadPatrick BermudezMarc BouffardAndré CormierKarine DelhommeauMichael FerreiraNicholas FosterTalya Grumberg

New York:Henry McDonagh III

Université de Montréal / BRAMS / CIRMMT:James BergstraDouglas EckSean Wood

Funding: Canadian Institutes of Health Research

(CIHR) Eileen Peters McGill Majors Fellowship Centre for Interdisciplinary Research in

Music Media and Technology (CIRMMT)

Members of the Z-Lab

FUTURE DIRECTIONS

A-V network specific to vocal pitch? manipulate other features (e.g., formants) training effects: foreign language students

MEG, EEG/ERP: pitch-shift response Auditory training vocal accuracy

more testing sessions of vocal production longer auditory training

Similar network with other perturbations? somatosensory feedback

EXP 1:Audio-vocal integrationSINGERS & NON-MUS

EXP 2:Voluntary/involuntary vocal pitch regulation

SINGERS

EXP 3:Vocal pitch regulationafter auditory training

NON-MUS

SIMPLE: Sing back single note PITCH-SHIFTED TASKS:

ignore/compensate for ± 200c-shift

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0-250

-225

-200

-175

-150

-125

-100

-75

-50

-25

0

25

50

75

100TARGETOWN FEEDBACK

TIME(s)

De

via

tio

n f

rom

ta

rge

t n

ote

(c

en

ts)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0-100

-75

-50

-25

0

25

50

75

100

125

150

175

200

225

250 NON-MUSICIAN

TIME(s)

De

via

tio

n f

rom

ta

rge

t n

ote

(c

en

ts)

IGNORE

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-250

-225

-200

-175

-150

-125

-100

-75

-50

-25

0

25

50

75

100

125

150

175

200

225

250

TARGETOWN FEEDBACKTIME(s)

De

via

tio

n f

rom

ta

rge

t n

ote

(c

en

ts)

COMPENSATE

x = 0

ACC

SMA

ThCbl

y = -14

M1

PAC/STG

z = 0

STG/INS

6.1

2.5

SIMPLE – PERC (SINGER ∩ NON-MUS)

SIMPLE

-175-150-125-100-75-50-25

0255075

100125150

NON-MUSSINGER

D# C#BG#F

* *b *b

erro

r (c

ents

)

IGNORE - SIMPLE

4.2

2.0y = -50

CO

NJU

NC

TIO

N

IPS

SMG

IGNORE

-250

255075

100125150175200225250275300

D# C#BG#F

INCORRECT

! !!!!

re

sp

on

se

ma

gn

itu

de

(ce

nts

)

NON-MUSSINGER

4.0

2.0

SIN

GE

R >

NO

N-M

US

y = -22

PT/STG

STS

COMPENSATE

-250

255075

100125150175200225250275300

D# C#BG#F

CORRECT

re

sp

on

se

ma

gn

itu

de

(ce

nts

)

NON-MUSSINGER

COMPENSATE – SIMPLE

3.9

2.0

y = -44

x = 4

CO

NJU

NC

TIO

N

IPS

SMG

ACC

3.7

2.0

z = 68

NO

N-M

US

> S

ING

ER

dPMC

4.4

2.4

x = 50

x = -10

SIN

GE

R >

NO

N-M

US

rACC

pSTS

Behavioral tasks: SIMPLE, IGN: singers > non-mus COMP: both groups successful Programmed to stabilize systems against disturbances Training needed to suppress stabilization mechanisms

fMRI results SIMPLE: singers ≈ non-musicians COMP/IGN: ↑ auditory activity in singers Audio-vocal integration:

Non-mus: dPMC Singers: rACC, pSTS

EXP 1: Experience-dependent neural substrates involved in vocal pitch regulation (Zarate & Zatorre, 2008)

IGNORE

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0-250

-225

-200

-175

-150

-125

-100

-75

-50

-25

0

25

50

75

100TARGETOWN FEEDBACK

TIME(s)

De

via

tio

n f

rom

ta

rge

t n

ote

(c

en

ts)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0-100

-75

-50

-25

0

25

50

75

100

125

150

175

200

225

250 NON-MUSICIAN

TIME(s)

De

via

tio

n f

rom

ta

rge

t n

ote

(c

en

ts)

pitch-shift response

Responses to long pitch shifts (>500ms):– Early: ~100-150ms, more automatic– Late: ~300ms, may be subject to voluntary control

EXPERIMENT 2: Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers (Zarate et al., submitted)

9 singers (6 ♀) SIMPLE; IGN/COMP 200c and 25c pitch shifts

HYPOTHESES: Resp. magnitude: COMP200c > IGN 200c Singers cannot suppress pitch-shift responses to

small shifts: COMP25c = IGN25c IGN/COMP200c networks similar to exp1 PAG pitch-shift response in IGN/COMP25c?

-25

0

25

50

75

100

125

150

175

200COMP 200c CORRECTIGN 200c INCORRECT

COMP 25c CORRECTIGN 25c INCORRECT

IGN 200c IGN 25c COMP 200c COMP 25c

!

*re

sp

on

se

ma

gn

itu

de

(c

en

ts)

-200

-175

-150

-125

-100

-75

-50

-25

0

+

*

IGN 200c IGN 25c COMP 200c COMP 25c

COMP 200c CORRECTIGN 200c INCORRECT

COMP 25c CORRECTIGN 25c INCORRECT

res

po

ns

e m

ag

nit

ud

e (

ce

nts

)

IGN 200c IGN 25c COMP 200c COMP 25c0

102030405060708090

100110120130140150

*

FULL VOLUNTARY CORRECTION (COMP)FULL INVOLUNTARY CORRECTION (IGN)

!

#

#

pe

rce

nt

res

po

ns

e m

ag

nit

ud

e (

%)

EXP 2: CONCLUSIONS

Pitch-shift responses to IGN25c under less voluntary control than IGN200c part of stabilization system

Role of PAG in pitch-shift response: not verified occurs in milliseconds, fMRI temporal resolution in seconds MEG, EEG/ERP: temporal interaction during A-V integration

Voluntary vocal corrections: same network for different magnitudes: rACC, pSTS, anterior insula functionally connected to each other pSTS interacts with IPS to monitor shifted feedback

EXPERIMENT 3: Modulation of functional network for singing after auditory training (Zarate et al., in prep)

HYPOTHESES:

Auditory training with pure tones ↑ micromelody discrimination (pure- and vocal-tone) ↑ vocal accuracy

Melodic singing requires audio-vocal integration: similar regions seen in Exp 1, 2 auditory working memory (e.g., inf. frontal)

Modulation of regions after training: singing network audio-vocal integration

• Perception:– 2 micromelodies: same/different?– Trained/tested with micromelodies (pure & vocal tones)

• Production: simple singing & 5-note melodies– Middle note ≈ 250 Hz– Intervals: 50 and 100 cents

EXP 3: ORDER OF TASKS

beh

pre

fMRI

pre

TRAINING

(2 weeks)

fMRI

post

beh

post

Trained

9 subj

(6 ♀)

Production:SimpleMelodies

Perception:Micromelody discrimination

Production:SimpleMelodies

YESProduction:SimpleMelodies

Perception:Micromelody discrimination

Production:SimpleMelodies

Control

10 subj

(6 ♀)

Production:SimpleMelodies

Perception:Micromelody discrimination

NO

Perception:Micromelody discrimination

Production:SimpleMelodies

SIMPLE – PERC (PRE)

7.8

2.5

x = 2 y = -16 z = 10

SMA

ACC

sensorimotor(mouth)

PAC / STG / PTINS

MEL(50+100) – SIMPLE (PRE)

6.6

2.6

PT/STG

z = 4y = -12

POST – PRE

SCANNER PARAMETERS

Exp 1 & 3: 1.5 Tesla TR = 10s, TE = 85ms voxel = 5 mm3

25 slices (whole head) Matrix: 64x64

Exp 2: 3 Tesla, cardiac gating TR = 10.3s, TE = 60ms voxel = 3.5 mm3

40 slices (whole head) Matrix: 64x64

DUAL-STREAM MODEL OFAUDITORY PROCESSING

Rauschecker/Tian 2000: Ventral: “what” – auditory object info Dorsal: “where” – auditory spatial info

Belin/Zatorre 2000: Dorsal = “how” Warren et al. 2005: Dorsal = “do”

Updated model: Dorsal = how / do

SINGING NETWORKS IN OTHER STUDIES

Schultz et al. 2005: voiced vs. whispered speech

Hickok et al. 2003: covert speech vs. covert humming

Toyomura et al. 2007: COMP

z = 10

Put

EXP 1: PUTAMINAL ACTIVITY

IGNORE - SIMPLE

4.0

2.0

4.4

2.4

z = 2

Put

pSTS

COMP - SIMPLE