Network Theory(19EC33) 2020-21

66
Network Theory(19EC33) 2020-21 Class-12: Dependent sources & Mesh Analysis MOHANKUMAR V. ASSISTANT PROFESSOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DR. AMBEDKAR INSTITUTE OF TECHNOLOGY, BENGALURU-56 E-MAIL: [email protected]

Transcript of Network Theory(19EC33) 2020-21

Page 1: Network Theory(19EC33) 2020-21

Network Theory(19EC33)2020-21

Class-12: Dependent sources & Mesh Analysis

MOHANKUMAR V.

ASSISTANT PROFESSORDEPARTMENT OF ELECTRONICS AND COMMUNICAT ION ENGINEER ING

DR . AMBEDKAR INST ITUTE OF TECHNOLOGY , BENGALURU -56

E-MAIL : MOHANKUMAR.V@DR -A IT .ORG

Page 2: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Dependent/Controlled Sources

Dependent Sources

Current and voltage of source depends on some other current and voltage.

Example:

Applications: Analysis of amplifiers

Types:

1. Voltage Dependent Voltage source

2. Current Dependent Voltage source

3. Voltage Dependent Current Source

4. Current dependent Current source

Page 3: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

1. Find the mesh currents for the electrical circuit shown in figure.

Obtain the control variables in terms of

mesh currents.

𝑰𝑨 = π‘°πŸ; 𝑰𝑩 = π‘°πŸKVL to Mesh-1

βˆ’πŸ“ + πŸ“π‘°πŸ + πŸπŸŽπ‘°π‘© + 𝟏𝟎 π‘°πŸ βˆ’ π‘°πŸ + πŸ“π‘°π‘¨ = πŸŽβˆ’πŸ“ + πŸ“π‘°πŸ + πŸπŸŽπ‘°πŸ + 𝟏𝟎 π‘°πŸ βˆ’ π‘°πŸ + πŸ“π‘°πŸ = 𝟎

πŸπŸŽπ‘°πŸ = πŸ“Therefore π‘°πŸ = 𝟎. πŸπŸ“π‘¨

KVL to Mesh-2

βˆ’πŸ“π‘°π‘¨ + 𝟏𝟎 π‘°πŸ βˆ’ π‘°πŸ + πŸ“π‘°πŸ + 𝟏𝟎 = πŸŽβˆ’πŸ“π‘°πŸ + 𝟏𝟎 π‘°πŸ βˆ’ π‘°πŸ + πŸ“π‘°πŸ + 𝟏𝟎 = 𝟎

βˆ’πŸπŸ“π‘°πŸ + πŸπŸ“π‘°πŸ = βˆ’πŸπŸŽW.K.T., π‘°πŸ = 𝟎. πŸπŸ“π‘¨Therefore π‘°πŸ = βˆ’πŸŽ. πŸ’πŸπŸ”π‘¨

Page 4: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

2. Find the mesh currents for the electrical circuit shown in figure.

Obtain the control variables in terms of

mesh currents.

𝑰𝐱 = 𝐈𝟏; 𝐈𝐲 = 𝐈𝟐 βˆ’ πˆπŸ‘KVL to mesh-1

βˆ’πŸ“ + πŸπ‘°πŸ + π‘°π’š + 𝟏 π‘°πŸ βˆ’ π‘°πŸ = 𝟎

βˆ’πŸ“ + π‘°πŸ + π‘°πŸ βˆ’ π‘°πŸ‘ + π‘°πŸ βˆ’ π‘°πŸ = πŸŽπŸπ‘°πŸ βˆ’ π‘°πŸ‘ = πŸ“ βˆ’βˆ’ βˆ’(𝟏)

KVL to mesh-2

𝟏 𝐈𝟐 βˆ’ 𝐈𝟏 βˆ’ 𝐈𝐲 + 𝟏𝐈𝟐 + 𝐈𝐱 + 𝟏 𝐈𝟐 βˆ’ πˆπŸ‘ = 𝟎

𝐈𝟐 βˆ’ 𝐈𝟏 βˆ’ 𝐈𝟐 + πˆπŸ‘ + 𝐈𝟐 + 𝐈𝟏 + 𝐈𝟐 βˆ’ πˆπŸ‘ = 𝟎𝟐𝐈𝟐 = 𝟎𝐈𝟐 = πŸŽπ€.

Mesh-3

πˆπŸ‘ = βˆ’πŸπ€

π‘°πŸ = πŸπ‘¨ , π‘°πŸ = πŸŽπ‘¨ 𝐚𝐧𝐝 πˆπŸ‘ = βˆ’πŸπ€

Page 5: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

3. Find the mesh currents for the electrical circuit shown in figure.

Apply KVL to mesh-2

πŸπ‘½πŸ + 𝟏 π‘°πŸ βˆ’ π‘°πŸ + πŸπ‘°πŸ + 𝟏𝟎 = πŸŽβˆ’πŸπŸŽπ‘°πŸ + π‘°πŸ βˆ’ π‘°πŸ + πŸπ‘°πŸ + 𝟏𝟎 = πŸŽβˆ’πŸπŸπ‘°πŸ + πŸ‘π‘°πŸ = βˆ’πŸπŸŽ βˆ’βˆ’ βˆ’(𝟐)

π‘°πŸ = 𝟎. πŸπŸ”πŸ 𝑨 𝒂𝒏𝒅 π‘°πŸ = βˆ’πŸ. πŸ• 𝑨

Obtain the control variables in terms of

mesh currents.

π‘½πŸ = βˆ’πŸ“π‘°πŸ; π‘½πŸ = πŸπ‘°πŸ;Apply KVL to mesh-1

+πŸ“ + πŸ“π‘°πŸ + πŸπ‘½πŸ + πŸ’π‘°πŸ + 𝟏 π‘°πŸ βˆ’ π‘°πŸ βˆ’ πŸπ‘½πŸ = πŸŽπŸ“ + πŸ“π‘°πŸ + πŸ’π‘°πŸ + πŸ’π‘°πŸ + π‘°πŸ βˆ’ π‘°πŸ + πŸπŸŽπ‘°πŸ = 𝟎

πŸπŸŽπ‘°πŸ + πŸ‘π‘°πŸ = βˆ’πŸ“ βˆ’βˆ’ βˆ’(𝟏)

Page 6: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

Obtaining the relationship between control variables and mesh currents

𝑽𝒙 = π‘Ήπ‘°πŸ 𝑽𝒙 = 𝑹(βˆ’π‘°πŸ) 𝑽𝒙 = 𝑹(π‘°πŸ βˆ’ π‘°πŸ) 𝑽𝒙 = 𝑹(π‘°πŸ βˆ’ π‘°πŸ)

π‘ͺ𝒂𝒔𝒆(π’Š) π‘ͺ𝒂𝒔𝒆(π’Šπ’Š) π‘ͺ𝒂𝒔𝒆(π’Šπ’Šπ’Š) π‘ͺ𝒂𝒔𝒆(π’Šπ’—)

Page 7: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

4. Find the mesh currents I1, I2, I3 and I4 for the electrical circuit shown in figure.

Obtain the control variables in terms of

mesh currents.

π‘°πŸ = πŸπŸŽπ‘¨ , π‘°πŸ = πŸπŸŽπ‘¨, π‘°πŸ‘ = πŸ‘πŸŽπ‘¨ 𝒂𝒏𝒅 π‘°πŸ’ = πŸ’πŸŽπ‘¨

Page 8: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

5. Find the mesh currents I1 and I2 for the electrical circuit shown in figure.

Obtain the control variables in terms of

mesh currents.

π‘°πŸ = πŸ“π‘¨, π‘°πŸ = βˆ’πŸ“ 𝑨 𝒂𝒏𝒅 π‘°πŸ‘ = πŸ“π‘¨

Page 9: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Disclaimer

Some Contents and Images showed in this PPT have

been taken from the various internet sources and

from books for educational purpose only.

Thank You

?

Page 10: Network Theory(19EC33) 2020-21

Network Theory(19EC33)2020-21

Class-13: Dependent sources & Mesh Analysis

MOHANKUMAR V.

ASSISTANT PROFESSORDEPARTMENT OF ELECTRONICS AND COMMUNICAT ION ENGINEER ING

DR . AMBEDKAR INST ITUTE OF TECHNOLOGY , BENGALURU -56

E-MAIL : MOHANKUMAR.V@DR -A IT .ORG

Page 11: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

Obtaining the relationship between control variables and mesh currents

𝑽𝒙 = π‘Ήπ‘°πŸ 𝑽𝒙 = 𝑹(βˆ’π‘°πŸ) 𝑽𝒙 = 𝑹(π‘°πŸ βˆ’ π‘°πŸ) 𝑽𝒙 = 𝑹(π‘°πŸ βˆ’ π‘°πŸ)

π‘ͺ𝒂𝒔𝒆(π’Š) π‘ͺ𝒂𝒔𝒆(π’Šπ’Š) π‘ͺ𝒂𝒔𝒆(π’Šπ’Šπ’Š) π‘ͺ𝒂𝒔𝒆(π’Šπ’—)

Page 12: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

4. Find the mesh currents I1, I2, I3 and I4 for the electrical circuit shown in figure.

Obtain the control variables in terms of

mesh currents.

𝑽𝒙 =𝟏

πŸ“π‘°πŸ βˆ’ π‘°πŸ βˆ’βˆ’ βˆ’ 𝟏

KVL at mesh-1

+πŸ” +𝟏

πŸπŸŽπ‘°πŸ +

𝟏

πŸ“πˆπŸ βˆ’ 𝐈𝟐 +

𝟏

πŸ”πˆπŸ βˆ’ πˆπŸ’ = 𝟎

𝟎. πŸ’πŸ”π‘°πŸ + 𝟎. πŸπ‘°πŸ βˆ’ 𝟎. πŸπŸ”πŸ”π‘°πŸ’ = βˆ’πŸ” βˆ’βˆ’βˆ’(𝟐)5Vx current source is common to mesh-2

and 3.

π‘°πŸ‘ βˆ’ π‘°πŸ = πŸ“π‘½π’™

π‘°πŸ‘ βˆ’ π‘°πŸ = πŸ“.𝟏

πŸ“π‘°πŸ βˆ’ π‘°πŸ

π‘°πŸ βˆ’ πŸπ‘°πŸ + π‘°πŸ‘ = 𝟎 βˆ’βˆ’ βˆ’ πŸ‘KVL to supermesh𝟏

πŸπŸŽπ‘°πŸ +

𝟏

πŸπŸ“π‘°πŸ‘ +

𝟏

πŸπ‘°πŸ‘ βˆ’ π‘°πŸ’ +

𝟏

πŸ“π‘°πŸ βˆ’ π‘°πŸ = 𝟎

βˆ’πŸŽ. πŸπ‘°πŸ + 𝟎. πŸπŸ“π‘°πŸ + 𝟎. πŸ“πŸ”π‘°πŸ‘ βˆ’ 𝟎. πŸ’π‘°πŸ’ = 𝟎 βˆ’βˆ’βˆ’ βˆ’ πŸ’

At mesh 4

π‘°πŸ’ = πŸ’πŸŽπ‘¨

π‘°πŸ = πŸπŸŽπ‘¨ , π‘°πŸ = πŸπŸŽπ‘¨, π‘°πŸ‘ = πŸ‘πŸŽπ‘¨ 𝒂𝒏𝒅 π‘°πŸ’ = πŸ’πŸŽπ‘¨

Supermesh

Page 13: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Examples:

5. Find the mesh currents I1 and I2 for the electrical circuit shown in figure.

Obtain the control variables in terms of

mesh currents.

π‘½πŸ = 𝟐 π‘°πŸ βˆ’ π‘°πŸ βˆ’βˆ’ βˆ’ 𝟏

KVL to mesh 1

βˆ’πŸπŸπŸŽ + πŸπŸ’π‘°πŸ + πŸ’π‘°πŸ + 𝟐 π‘°πŸ βˆ’ π‘°πŸ = πŸŽπŸπŸŽπ‘°πŸ βˆ’ πŸπ‘°πŸ = 𝟏𝟏𝟎 βˆ’βˆ’ βˆ’ 𝟐

0.5V1 current source is common to

mesh-2 and 3,

𝟎. πŸ“π‘½πŸ = π‘°πŸ‘ βˆ’ π‘°πŸπŸŽ. πŸ“ 𝟐 π‘°πŸ βˆ’ π‘°πŸ = π‘°πŸ‘ βˆ’ π‘°πŸ

π‘°πŸ = π‘°πŸ‘ βˆ’ βˆ’ πŸ‘KVL to supermesh

πŸπŸŽπ‘°πŸ‘ + πŸ”π‘°πŸ + 𝟐 π‘°πŸ βˆ’ π‘°πŸ = πŸŽβˆ’πŸπ‘°πŸ + πŸ–π‘°πŸ + πŸπŸŽπ‘°πŸ‘ = 𝟎 βˆ’ βˆ’(πŸ’)

Solve equations (2, 3 and 4)

We get.

π‘°πŸ = πŸ“π‘¨, π‘°πŸ = βˆ’πŸ“ 𝑨 𝒂𝒏𝒅 π‘°πŸ‘ = πŸ“π‘¨

Page 14: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis

β€’ Node: A junction or a point where two or more elements

are connected.

β€’ Example:

β€’ Fundamental Node : A node where Current division takes

place

β€’ Number of unknowns is equal to the number of nodes-1.

β€’ V1, V2, V3…are node voltages

Page 15: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis

Procedure to apply Node Analysis:

Step-1: As for as possible try to convert voltage sources into current sources, without

affecting the load elements.

Step-2: Identify the number of fundamental nodes.

Step-3: Name the nodes and assign node voltages as V1, V2, V3…

NOTE: Ground potential is always zero.

Step-4: Assign branch currents to each branch as I1, I2, I3 etc., and choose the directions

randomly.

Step-5: Apply KCL at each node

NOTE: Number of KCL equations is equal to the number of nodes-1/number of

unknowns.

Step-6: Replace branch currents in terms of node voltages.

Step-7: Solve KCL equations using any mathematical technique to find node voltages.

Step-8: Find the branch currents/branch voltages/power from node voltages using ohm’s

law.

Page 16: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Disclaimer

Some Contents and Images showed in this PPT have

been taken from the various internet sources and

from books for educational purpose only.

Thank You

?

Page 17: Network Theory(19EC33) 2020-21

Network Theory(19EC33)2020-21

Class-14&15: Node Analysis and Examples

MOHANKUMAR V.

ASSISTANT PROFESSORDEPARTMENT OF ELECTRONICS AND COMMUNICAT ION ENGINEER ING

DR . AMBEDKAR INST ITUTE OF TECHNOLOGY , BENGALURU -56

E-MAIL : MOHANKUMAR.V@DR -A IT .ORG

Page 18: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis

β€’ Node: A junction or a point where two or more elements

are connected.

β€’ Example:

β€’ Fundamental Node : A node where Current division takes

place

β€’ Number of unknowns is equal to the number of nodes-1.

β€’ V1, V2, V3…are node voltages

Page 19: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis

Procedure to apply Node Analysis:

Step-1: As for as possible try to convert voltage sources into current sources, without

affecting the load elements.

Step-2: Identify the number of fundamental nodes.

Step-3: Name the nodes and assign node voltages as V1, V2, V3…

NOTE: Ground potential is always zero.

Step-4: Assign branch currents to each branch as I1, I2, I3 etc., and choose the

directions randomly.

Step-5: Apply KCL at each node

NOTE: Number of KCL equations is equal to the number of nodes-1/number of

unknowns.

Step-6: Replace branch currents in terms of node voltages.

Step-7: Solve KCL equations using any mathematical technique to find node voltages.

Step-8: Find the branch currents/branch voltages/power from node voltages using ohm’s

law.

Page 20: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Tips

𝐈𝟏 =π•πŸ βˆ’ π•πŸ

𝐑

𝐈𝟏 =π•πŸ βˆ’ π•πŸ

𝐑

I1 =VG βˆ’ (βˆ’V1) βˆ’ V2

R

𝐈𝟏 =π•πŸ βˆ’ π•πŸ

𝐑(π’π’π§πœπž 𝐕𝐆 = πŸŽπ•)

I1 =V2 βˆ’ V1 βˆ’ VG

R

𝐈𝟏 =π•πŸ βˆ’ π•πŸ

𝐑(π’π’π§πœπž 𝐕𝐆 = πŸŽπ•)

I1 =VG βˆ’ V1

R

𝐈𝟏 =βˆ’π•πŸπ‘

(π’π’π§πœπž 𝐕𝐆 = πŸŽπ•)

I1 =V1 βˆ’ VG

R

𝐈𝟏 =π•πŸπ‘

(π’π’π§πœπž 𝐕𝐆 = πŸŽπ•)

Page 21: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Tips

I1 =V1 βˆ’ (βˆ’Vs) βˆ’ V2

R

𝐈𝟏 =π•πŸ + 𝐕𝐬 βˆ’ π•πŸ

𝐑

𝐈𝟏 =π•πŸ βˆ’ 𝐕𝐬 βˆ’ π•πŸ

𝐑

𝐈𝟏 =π•πŸ βˆ’ 𝐕𝐬 βˆ’ π•πŸ

𝐑 I1 =V2 βˆ’ (βˆ’Vs) βˆ’ V1

R

𝐈𝟏 =π•πŸ + 𝐕𝐬 βˆ’ π•πŸ

𝐑

Page 22: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples1. Find the branch currents and branch voltages for the electrical circuit shown in figure.

Identify the fundamental nodes

Assign branch currents

KCL at node 1

1 = 𝐼1 + 𝐼2Express branch currents in terms of node

voltages

1 =𝑉1 βˆ’ 𝑉𝐺

2+𝑉1 βˆ’ 𝑉2

21 = 𝑉1 βˆ’ 0.5𝑉2 βˆ’βˆ’ βˆ’(1)

KCL at node 2

𝐼2 + 2 = 𝐼3𝑉1 βˆ’ 𝑉2

2+ 2 =

𝑉2 βˆ’ 𝑉𝐺1

0.5𝑉1 βˆ’ 1.5𝑉2 = βˆ’2 βˆ’βˆ’ βˆ’(2)

Answer:

V1=2VV2=2V

Page 23: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-ExamplesBranch currents

πˆπ€π = πŸπ€

πˆππƒ = 𝐈𝟏 =π•πŸπŸ= πŸπ€

πˆππ‚ = 𝐈𝟐 =π•πŸ βˆ’ π•πŸ

𝟐= πŸŽπ€

πˆπ‚πƒ = πˆπŸ‘ =π•πŸπŸ= πŸπ€.

Page 24: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples2. Find the Node voltages for the electrical circuit shown in figure.

Identify the fundamental nodes

Assign branch currents KCL at node A

𝐼1 + 𝐼2 = 𝐼3Express branch currents in terms of node voltages

10 βˆ’ 𝑉𝐴2

+ βˆ’π‘‰π΄10

=𝑉𝐴 βˆ’ 𝑉𝐡

5βˆ’βˆ’ βˆ’(1)

8𝑉𝐴 βˆ’ 2𝑉𝐡 = 50 βˆ’βˆ’ βˆ’(1)KCL at node B

𝐼3 = 𝐼4 + 𝐼5 +1

3𝑉𝐴 βˆ’ 𝑉𝐡

5=𝑉𝐡15

+𝑉𝐡 βˆ’ 18

3βˆ’βˆ’ βˆ’(2)

3𝑉𝐴 βˆ’ 9𝑉𝐡 = βˆ’30 βˆ’βˆ’ βˆ’(2)π€π§π¬π°πžπ«: 𝐕𝐀 = πŸ—. πŸ‘πŸ—π• 𝐚𝐧𝐝 𝐕𝐁 = 𝟏𝟐. πŸ“πŸ–π•

Page 25: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples3. Find the Node voltages for the electrical circuit shown in figure.

Identify the fundamental nodes Assign branch currents

Page 26: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples

KCL at node 1, 𝐼2 = 𝐼1 + 𝐼3 + 9𝑉2 βˆ’ 𝑉1

2=𝑉1 βˆ’ 12

4+𝑉1 βˆ’ 𝑉3

4+ 9

βˆ’π‘‰1 + 0.5𝑉2 + 0.25𝑉3 = 6 βˆ’βˆ’ βˆ’ 1KCL at node 2, 𝐼2 + 𝐼4 + 𝐼5 = 0

𝑉2 βˆ’ 𝑉12

+𝑉2100

+𝑉2 βˆ’ 𝑉3

5= 0

βˆ’0.5𝑉1 + 0.71𝑉2 βˆ’ 0,2𝑉3 = 0 βˆ’βˆ’ βˆ’ 2KCL at node 3, 9 + 𝐼3 + 𝐼5 + 𝐼6 = 0

9 +𝑉1 βˆ’ 𝑉3

4+𝑉2 βˆ’ 𝑉3

5+βˆ’π‘‰320

= 0

0.25𝑉1 + 0.2𝑉2 βˆ’ 0.5𝑉3 = βˆ’9 βˆ’βˆ’ βˆ’(3)

π€π§π¬π°πžπ«: π•πŸ = πŸ”. πŸ‘πŸ“π• , π•πŸ = 𝟏𝟏. πŸ•πŸ”π• 𝐚𝐧𝐝 π•πŸ‘ = πŸπŸ“. πŸ–πŸ–π•

Page 27: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Disclaimer

Some Contents and Images showed in this PPT have

been taken from the various internet sources and

from books for educational purpose only.

Thank You

?

Page 28: Network Theory(19EC33) 2020-21

Network Theory(19EC33)2020-21

Class-16: Node Analysis and Examples

MOHANKUMAR V.

ASSISTANT PROFESSORDEPARTMENT OF ELECTRONICS AND COMMUNICAT ION ENGINEER ING

DR . AMBEDKAR INST ITUTE OF TECHNOLOGY , BENGALURU -56

E-MAIL : MOHANKUMAR.V@DR -A IT .ORG

Page 29: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples4. Find the V1 and V2 using Node voltage analysis for the electrical circuit shown in figure.

Identify the fundamental nodes and assign branch currents

Page 30: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples

π‘Žπ‘‘ π‘›π‘œπ‘‘π‘’ βˆ’ 150V source is connected between non

reference node -1 to ground node.

𝑉1 = 50𝑉 βˆ’βˆ’ βˆ’(1)Apply KCL at node-2

𝐼2 = 𝐼3 + 𝐼4𝑉1 βˆ’ 𝑉250

=𝑉2 βˆ’ 10

20+𝑉210

0.02𝑉1 βˆ’ 0.17𝑉2 = βˆ’0.5 βˆ’βˆ’ βˆ’(2)

π€π§π¬π°πžπ«: π•πŸ = πŸ“πŸŽπ• and V2=8.82V

Page 31: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples5. Find the V1 and V2 using Node voltage analysis for the electrical circuit shown in figure.

Identify the fundamental nodes and assign branch currents

Page 32: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples

𝑉𝑐 = 20𝑉 βˆ’βˆ’ βˆ’ 1KCL at node a.

𝐼1 = 𝐼2 + 280 βˆ’ π‘‰π‘Ž50

=π‘‰π‘Ž βˆ’ 𝑉𝑏10

+ 2

βˆ’0.12π‘‰π‘Ž + 0.1𝑉𝑏 = 0.4 βˆ’βˆ’ βˆ’ 2KCL at node b

𝐼2 = 𝐼3 + 𝐼4π‘‰π‘Ž βˆ’ 𝑉𝑏10

=𝑉𝑏50

+𝑉𝑏 βˆ’ 𝑉𝑐20

0.1π‘‰π‘Ž βˆ’ π‘œ. 17𝑉𝑏 + 0.05𝑉𝑐 = 0 βˆ’βˆ’βˆ’ 3

π€π§π¬π°πžπ«: π•πš = πŸ‘. πŸŽπŸ–π•, 𝐕𝐛 = πŸ•. πŸ”πŸ—π• , π•πœ = πŸπŸŽπ•,

π‘½πŸ = 𝑽𝒂 βˆ’ 𝑽𝒃; π‘½πŸ = 𝑽𝒃 βˆ’ π‘½π’„π•πŸ = βˆ’πŸ’. πŸ”πŸπ• 𝐚𝐧𝐝 π•πŸ‘ = βˆ’πŸπŸ. πŸ‘πŸπ•

Page 33: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples6. Find Node voltages for the electrical circuit shown in figure.

Identify the fundamental nodes and assign branch currents

Page 34: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples

Answer: π‘½πŸ = πŸ’π‘½ ; π‘½πŸ = πŸ”π‘½ ; π‘½πŸ‘ = πŸ’π‘½.

NOTE: if an ideal voltage source is connected between two non

reference nodes, consider that common voltage source

independently and write mathematical equation corresponding

to the common voltage sources.

𝑉2 βˆ’ 𝑉3 = 2 βˆ’βˆ’βˆ’ 1For further analysis, no need to consider that voltage source.

Combine nodes 2 and 3 to form a single node called as super

node.

Apply KCL at super node.

𝐼2 + 3 + 2 = 𝐼3𝑉1 βˆ’ 6 βˆ’ 𝑉2

2+ 5 =

𝑉34βˆ’βˆ’βˆ’ βˆ’ 2 ; 0.5V1 βˆ’ 0.5V2 βˆ’ 0.25V3 = βˆ’2

Apply KCL at node1

𝐼1 = 𝐼2 + 2

βˆ’π‘‰12

=𝑉1 βˆ’ 6 βˆ’ 𝑉2

2+ 2 βˆ’βˆ’ βˆ’ 3 ;βˆ’π‘‰1 + 0.5𝑉2 = βˆ’1

Page 35: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Practice problems1. Carryout nodal analysis and find V2.

2. Carryout nodal analysis and find node voltages.

π‘½πŸ = βˆ’πŸŽ. πŸπŸ•π‘½ 𝒂𝒏𝒅 π‘½πŸ βˆ’ πŸ”. πŸπŸ•π‘½

π‘½πŸ = 𝟎. πŸŽπŸ” 𝑽𝒐𝒍𝒕𝒔

Page 36: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Practice problems3. Carryout nodal analysis and find voltage across 2 Ohms resistor (Connected Vertically).

4. Find the power dissipated in 6KOhms resistor using node voltage analysis.

𝑷 = 𝟎. πŸπŸ—π‘Ύπ’‚π’•π’•π’”

π‘½πŸ π‘½π’†π’“π’•π’Šπ’„π’‚π’π’π’š 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅 = 𝟎. πŸ‘πŸ 𝑽𝒐𝒍𝒕𝒔

Page 37: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Practice problems5. Find the current through 50 Ohms resistor using mesh analysis.

6. Find the power dissipated in 6KOhms resistor using Mesh analysis.

π‘°πŸ“πŸŽ π‘Άπ’‰π’Žπ’” = 𝟎. πŸπŸ’π‘¨ (𝒃 𝒕𝒐 𝒂)

𝑷 = 𝟎. πŸπŸ—π‘Ύπ’‚π’•π’•π’”

Page 38: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Disclaimer

Some Contents and Images showed in this PPT have

been taken from the various internet sources and

from books for educational purpose only.

Thank You

?

Page 39: Network Theory(19EC33) 2020-21

Network Theory(19EC33)2020-21

Class-17&18: Node Voltage Analysis and AC circuit Analysis

MOHANKUMAR V.

ASSISTANT PROFESSORDEPARTMENT OF ELECTRONICS AND COMMUNICAT ION ENGINEER ING

DR . AMBEDKAR INST ITUTE OF TECHNOLOGY , BENGALURU -56

E-MAIL : MOHANKUMAR.V@DR-A IT .ORG

Page 40: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples7. Find V1 and V2 using Node voltage method for the electrical circuit shown in figure.

𝐼1, 𝐼2 π‘Žπ‘›π‘‘ 𝑉2Express control variables in terms of node voltages.

𝐼1 =𝑉210

; 𝐼2 =𝑉110

π‘Žπ‘›π‘‘ 𝑉2

Apply KCL at node-1.

2𝐼1 = 𝐼2 + 𝐼3 + 2𝑉2

2𝑉210

=𝑉110

+𝑉1 βˆ’ 𝑉210

+ 2𝑉2

0.2𝑉2 = 0.1𝑉1 + 0.1𝑉1 βˆ’ 0.1𝑉2 + 2𝑉2π‘½πŸ = 𝟎 𝑽𝒐𝒍𝒕𝒔

Apply KCL at node-2

𝐼3 + 2𝑉2 + 2𝐼2 = 𝐼1𝑉1 βˆ’ 𝑉210

+ 2𝑉2 + 2𝑉110

=𝑉210

0.1𝑉1 βˆ’ 0.1𝑉2 + 2𝑉2 + 0.2𝑉1 = 0.1𝑉20.3𝑉1 + 1.8𝑉2 = 0 βˆ’ βˆ’(1)

π‘½πŸ = 𝟎 𝑽𝒐𝒍𝒕𝒔.

π€π§π¬π°πžπ«: π•πŸ = πŸŽπ• 𝐚𝐧𝐝 π•πŸ = πŸŽπ•

I3

Page 41: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Node Analysis-Examples8. Find Node voltages for the electrical circuit shown in figure.

𝑉π‘₯ π‘Žπ‘›π‘‘ π‘‰π‘¦π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘£π‘Žπ‘Ÿπ‘œπ‘Žπ‘π‘™π‘’π‘ .

Express control variables in terms of node voltages.

𝑉π‘₯ = 𝑉2 βˆ’ 𝑉1 βˆ’βˆ’βˆ’(1)𝑉𝑦 = 𝑉4 βˆ’ 𝑉1 βˆ’βˆ’ βˆ’(2)

Node-1

𝑉1 = βˆ’12 π‘‰π‘œπ‘™π‘‘π‘  βˆ’βˆ’ βˆ’ 3Apply KCL at node 2

𝐼1 + 𝐼3 + 14 = 0𝑉1 βˆ’ 𝑉20.5

+𝑉3 βˆ’ 𝑉2

2+ 14 = 0 βˆ’βˆ’ βˆ’ 4 ; 2𝑉1 βˆ’ 2𝑉2 + 0.5𝑉3 βˆ’ 0.5𝑉2 = βˆ’14

πŸπ‘½πŸ βˆ’ 𝟐. πŸ“π‘½πŸ + 𝟎. πŸ“π‘½πŸ‘ = βˆ’πŸπŸ’0.2Vy voltage source is between V3 and V4.

0.2𝑉𝑦 = 𝑉3 βˆ’ 𝑉4 βˆ’βˆ’ βˆ’ 5 ; 0.2 𝑉4 βˆ’ 𝑉1 = 𝑉3 βˆ’ 𝑉4 βˆ’βˆ’ βˆ’(5)

βˆ’πŸŽ. πŸπ‘½πŸ βˆ’ π‘½πŸ‘ + πŸπ‘½πŸ’ = 𝟎Apply KCL at super node.

𝐼2 + 𝐼4 + 0.5𝑉π‘₯ = 𝐼3𝑉1 βˆ’ 𝑉42.5

+ βˆ’π‘‰4 + 0.5 𝑉2 βˆ’ 𝑉1 =𝑉3 βˆ’ 𝑉2

2βˆ’βˆ’ βˆ’(6)

βˆ’πŸŽ. πŸ—π‘½πŸ + π‘½πŸ βˆ’ 𝟎. πŸ“π‘½πŸ‘ βˆ’ 𝟏. πŸ’π‘½πŸ’ = 𝟎

π€π§π¬π°πžπ«: π•πŸ = βˆ’πŸπŸ, π•πŸ βˆ’ πŸ’π•, π•πŸ‘ = 𝟎 𝐕 𝐚𝐧𝐝 π•πŸ’ = βˆ’πŸπ•

super node

Page 42: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

AC QuantitiesAC quantities are represented in two different formats.

Polar form

Format=Mβˆ βˆ…Where, M is the magnitude and βˆ… is the phase angle

Rectangular form

x + jyWhere, x is the real part and y is the imaginary part.

Conversion from rectangular to polar

Given: x+jy, To find: M and βˆ…

M = x2 + y2 and βˆ… = tanβˆ’1(y

x)

Conversion from polar to rectangular

Given : M and βˆ…, To find: x and y

x = Mcosβˆ… and y = Msinβˆ…

Page 43: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

AC QuantitiesConversions are used to perform mathematical calculations.

For addition and subtraction-Rectangular form

Consider

A = x1 + jy1 and B = x2 + jy2A + B = (x1+x2) + j y1 + y2

Similarly A βˆ’ B = x1 βˆ’ x2 + j y1 βˆ’ y2

For multiplication and division-Polar form

Consider

A = M1∠ βˆ…1 and B = M2∠ βˆ…2A βˆ— B = M1 βˆ— M2∠ βˆ…1 + βˆ…2

SimilarlyA

B=

M1

M2∠ βˆ…1 βˆ’ βˆ…2

Also

A βˆ— B =(x1 + jy1)(x2 + jy2)= x1x2 + jx1y2 + jx2y1 + j2y1y2

= x1x2 βˆ’ y1y2 + j x1y2 + x2y1 since j2 = βˆ’1

NOTE:

A = 10; A = 10∠00 β‡’ 10 + j0

A = 10∠900 β‡’ 0 + j10

A = 10∠ βˆ’ 900 β‡’ 0 βˆ’ j10

A = 10 + j0 β‡’ 10 or 10∠00

A = j10 β‡’ 10∠900

A = βˆ’j10 β‡’ 10∠ βˆ’ 900 or βˆ’ 10∠900

A =1

jβ‡’ βˆ’j

A = j βˆ— j β‡’ j2 = βˆ’1.

Page 44: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

AC Quantities

Resistors:

R Ohms (Same for both DC and AC)

Voltage in phase with the current

Capacitors:

C Farads (DC analysis)

-jXπ‘ͺ Ohms (Capacitive reactance AC analysis) (Negative sign-

Voltage lags current by 90o)

Where, 𝑋𝐢 =1

2πœ‹π‘“πΆβ‡’ 1/𝑀𝐢,π‘€β„Žπ‘’π‘Ÿπ‘’, 𝑓 𝑖𝑠 π‘‘β„Žπ‘’ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦.

Inductors:

L Henry (DC analysis)

+jX𝑳 Ohms (Inductive reactance AC analysis) (Positive sign-

voltage leads current by 90o)

Where, 𝑋𝐿 = 2πœ‹π‘“πΏ β‡’ 𝑀𝐿,π‘€β„Žπ‘’π‘Ÿπ‘’, 𝑓 𝑖𝑠 π‘‘β„Žπ‘’ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦.

Resistors

Capacitors

Inductors

Page 45: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Mesh Analysis-Examples

KVL at mesh-1

5I1 + j5(I1 βˆ’ I2) βˆ’ 30∠00 = 0πŸ“ + π£πŸ“ 𝐈𝟏 βˆ’ π£πŸ“πˆπŸ = πŸ‘πŸŽβˆ πŸŽπŸŽ βˆ’βˆ’ βˆ’ 𝟏

KVL at mesh-2

2I2 + j3I2 + 6 I2 βˆ’ I3 + j5 I2 βˆ’ I1 = 0βˆ’π£πŸ“ 𝐈𝟏 + πŸ– + π£πŸ– 𝐈𝟐 βˆ’ πŸ”πˆπŸ‘ = 𝟎 βˆ’βˆ’ βˆ’ 𝟐

KVL at mesh-3

4I3 + 35.36∠450 + 6 I3 βˆ’ I2 = 0βˆ’πŸ” 𝐈𝟐 + 𝟏𝟎 πˆπŸ‘ = βˆ’πŸ‘πŸ“. πŸ‘πŸ”βˆ πŸ’πŸ“πŸŽ βˆ’βˆ’ βˆ’ πŸ‘

Solve equations (1), (2) and (3), we get

I1, I2 and I3

1. Find the mesh currents using mesh analysis

Page 46: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Mesh Analysis-Examples

βˆ†1= 1320 + 𝑗2400 βˆ’ 𝑗750 + 750βˆ†πŸ= πŸπŸŽπŸ•πŸŽ + π’‹πŸπŸ”πŸ“πŸŽ or πŸπŸ”πŸ’πŸ•. πŸπŸ’βˆ πŸ‘πŸ–. πŸ“πŸ“πŸŽ

Similarly evaluate βˆ†2 π‘Žπ‘›π‘‘ βˆ†3

Therefore π‘°πŸ =βˆ†πŸ

βˆ†= πŸ’. πŸπŸ’βˆ πŸ’πŸ“. 𝟎𝟏 πŸŽπ‘¨

Similarly evaluate 𝐼2 =βˆ†2

βˆ†and 𝐼3 =

βˆ†3

βˆ†

Cramer’s rule:

βˆ†=(5 + 𝑗5) βˆ’π‘—5 0βˆ’π‘—5 8 + 𝑗8 βˆ’60 βˆ’6 10

, 𝑋 =30 + 𝑗0

0βˆ’25 βˆ’ 𝑗25

βˆ†= 5 + 𝑗5 [ 8 + 𝑗8 10) βˆ’ 6 6 βˆ’ (βˆ’π‘—5)[βˆ’π‘—5 10 βˆ’ 0]βˆ†= (5 + 𝑗5)[80 + 𝑗80 βˆ’ 36] + 𝑗5[βˆ’π‘—50]

βˆ†= 5 + 𝑗5 44 + 𝑗80 + 250βˆ†= 220 + 𝑗400 + 𝑗220 βˆ’ 400 + 250βˆ†= πŸ•πŸŽ + π’‹πŸ”πŸπŸŽ or πŸ”πŸπŸ‘. πŸ—βˆ πŸ–πŸ‘. πŸ“πŸ“πŸŽ

βˆ†1=

30 + 𝑗0 βˆ’π‘—5 00 8 + 𝑗8 βˆ’6

βˆ’25 βˆ’ 𝑗25 βˆ’6 10

βˆ†1= 30 8 + 𝑗8 10 βˆ’ 36 + 𝑗5 βˆ’6 25 + 𝑗25

βˆ†1= 30 80 + 𝑗80 βˆ’ 36 + 𝑗5 βˆ’150 βˆ’ 𝑗150βˆ†1= 30 44 + 𝑗80 βˆ’ 𝑗750 + 750

Page 47: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Mesh Analysis-Examples

2. Find the current I0 using mesh analysis

Page 48: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Mesh Analysis-ExamplesKCL at node-1

𝐼1 = 𝐼2 + 𝐼330∠00 βˆ’ 𝑉1

5=

𝑉1𝑗5

+𝑉1 βˆ’ 𝑉22 + 𝑗3

6 βˆ’ 0.2𝑉1 = βˆ’π‘—0.2𝑉1 +𝑉1 βˆ’ 2

3.6∠56.30

6 βˆ’ 0.2𝑉1 = βˆ’π‘—0.2𝑉1 + 0.277∠ βˆ’ 56.30(𝑉1 βˆ’ 𝑉2)6 βˆ’ 0.2𝑉1 = βˆ’π‘—0.2𝑉1 + 0.153𝑉1 βˆ’ 𝑗0.23𝑉1 βˆ’ 0.153𝑉2 + 𝑗0.23𝑉26 = 0.2𝑉1 βˆ’ 𝑗0.2𝑉1 + 0.153𝑉1 βˆ’ 𝑗0.23𝑉1 βˆ’ 0.153𝑉2 + 𝑗0.23𝑉2(𝟎. πŸ‘πŸ“πŸ‘ βˆ’ π’‹πŸŽ. πŸ’πŸ‘)π‘½πŸ + (βˆ’πŸŽ. πŸπŸ“πŸ‘ + π’‹πŸŽ. πŸπŸ‘)π‘½πŸ = πŸ” βˆ’βˆ’ βˆ’(𝟏)

KCL at node-2

𝐼3 + 𝐼4 = 𝐼5𝑉1 βˆ’ 𝑉22 + 𝑗3

+ βˆ’π‘‰26

= (𝑉2βˆ’35.36∠450)/4

3. Find the Node voltages using node analysis

0.153𝑉1 βˆ’ 𝑗0.23𝑉1 βˆ’ 0.153𝑉2 + 𝑗0.23𝑉2 βˆ’ 0.166V2 = 0.25V2 βˆ’ 8.84∠450.153𝑉1 βˆ’ 𝑗0.23𝑉1 βˆ’ 0.153𝑉2 + 𝑗0.23𝑉2 βˆ’ 0.166V2 βˆ’ 0.25V2 = 8.84∠45

𝟎. πŸπŸ“πŸ‘ βˆ’ π’‹πŸŽ. πŸπŸ‘ π‘½πŸ + βˆ’πŸŽ. πŸ“πŸ”πŸ— + π’‹πŸŽ. πŸπŸ‘ π‘½πŸ = πŸ–. πŸ–πŸ’βˆ πŸ’πŸ“ βˆ’βˆ’ βˆ’(𝟐)

𝑺𝒐𝒍𝒗𝒆 𝟏 𝒂𝒏𝒅 𝟐 𝒕𝒐 π’‡π’Šπ’π’… π‘½πŸ 𝒂𝒏𝒅 π‘½πŸ

Page 49: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Problems4. Find IX using node analysis.

Page 50: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Problems

Page 51: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Practice problems1. Find node voltages

2. Find node voltages and mesh currents for the electrical circuit shown in figure.

Page 52: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Practice problems3. Find node voltages

Page 53: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Disclaimer

Some Contents and Images showed in this PPT have

been taken from the various internet sources and

from books for educational purpose only.

Thank You

?

Page 54: Network Theory(19EC33) 2020-21

Network Theory(19EC33)2020-21

Class-19&20: UNIT-II; Ch-1: Network Theorems

MOHANKUMAR V.

ASSISTANT PROFESSORDEPARTMENT OF ELECTRONICS AND COMMUNICAT ION ENGINEER ING

DR . AMBEDKAR INST ITUTE OF TECHNOLOGY , BENGALURU -56

E-MAIL : MOHANKUMAR.V@DR-A IT .ORG

Page 55: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Network TheoremsTheorems:

Theorems are statements that can be demonstrated to be true by some accepted mathematical

arguments and functions. Generally theorems are general principles. The process of showing a

theorem to be correct is called a proof.

β€’ Proved theorems can be used to analyze the given system, and theorems helps to analyze the

complex systems easily.

β€’ In electrical system most popular theorems are

1. Thevenin’s Theorem

2. Norton’s Theorem

3. Superposition Theorem

4. Reciprocity theorem

5. Millman’s Theorem and

6. Maximum Power Transfer Theorem

Page 56: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Thevenin’s Theorem1. Thevenin’s Theorem

Statement: Any active linear bilateral complex electrical network between open circuited load terminals can

be replaced by a single practical voltage source between the same open circuited load terminals.

A practical voltage source is a series combination of ideal voltages source and a resistor (DC

circuit)/Impedance(AC Circuits).

The voltage source being equal to the voltage measured between the open circuited load terminals, denoted

as VTH or VOC and Resistor/Impedance being equal to the equivalent Resistance / Impedance measured

between open circuited load terminals by replacing all independent sources by their internal impedances,

denoted as RTH or ZTH.

Internal Impedance of an ideal voltage sources is zero, Hence replace it by short circuit.

Internal Impedance of an ideal current sources is infinity , hence replace it by open circuit.

Page 57: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Thevenin’s TheoremProcedure to obtain Thevenin’s equivalent circuit.

Step-1: Identify the load element, remove the load element and name the load terminals.

Step-2: Find the open circuit voltage using any network analysis technique.

Step-3: Find the equivalent resistance/Impedance between the open circuited terminals by

replacing all independent sources by their internal impedance.

Step-4: Replace the given circuit between the open circuited load terminals by the Thevenin’s

equivalent circuit.

Step-5: Connect the load element between the load terminals and find the required load quantity

using current division or voltage division formula.

NOTE: For the circuits with dependent sources, find RTH using the ratio=VOC/ISC

Page 58: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Thevenin’s Theorem-ExamplesExample:

1. Obtain the Thevenin’s equivalent circuit between the terminals A and B.

+_20 V

5

20

10

1.5 A

A

B

5

20

10 A

B

Step-2. To find VTH

𝑉𝐴𝐡 = 𝑉𝑂𝐢 = 𝑉𝑇𝐻 = 𝑉10 + 𝑉20𝑉𝑇𝐻 = 10 𝐼2 + 20 𝐼1 βˆ’βˆ’ βˆ’(1)

Apply KVL at mesh-1

5𝐼1 + 20𝐼1 = 2025𝐼1 = 20𝐼1 = 0.8𝐴.

At mesh-2

𝐼2 = 1.5𝐴

𝑉𝑇𝐻 = 10 1.5 + 20 0.8 β‡’ πŸ‘πŸ 𝑽𝒐𝒍𝒕𝒔

Step-3: To find RTH

𝑅𝑇𝐻 = 𝑅𝐴𝐡 = π‘…π‘’π‘ž = 20||5 + 10

𝑅𝑇𝐻 = πŸπŸ’ π‘Άπ’‰π’Žπ’”

𝐼1

𝐼2

Page 59: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

2. Obtain the Thevenin’s equivalent circuit to find the current through R of 10 ohms

Remove the load element and name the load terminals.

Thevenin’s Theorem-Examples

𝑉𝑇𝐻 = 𝑉5.2 + 𝑉10.9 β‡’ 5.2 𝐼1 + 10.9 βˆ’πΌ2𝑉𝑇𝐻 = 𝑉7.1 + 𝑉19.6 β‡’ 7.1 βˆ’πΌ1 + 19.6(𝐼2)

𝑉𝑇𝐻 = 𝑉5.2 βˆ’ 100 + 𝑉19.6 β‡’ 5.2 𝐼1 βˆ’ 100 + 19.6(𝐼2)𝑉𝑇𝐻 = 𝑉7.1 + 100 + 𝑉10.9 β‡’ 7.1 βˆ’πΌ1 + 100 + 10.9 βˆ’πΌ2

Apply KVL at mesh-1; 12.3𝐼1 = 100; 𝐼1 = 8.13𝐴Apply KVL at mesh-2; 30.5𝐼2 = 100; 𝐼2 = 3.28 𝐴.

𝑽𝑻𝑯 = πŸ”. πŸ”πŸ‘π‘½

Page 60: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

To find RTH Re arranging the resistors

𝑅𝑇𝐻 = (5.2| 7.1 + (10.9||19.6)𝑅𝑇𝐻 = 10 π‘‚β„Žπ‘šπ‘ 

Thevenin’s Equivalent circuit

Given R=10 Ohms

π‘°πŸπŸŽ =𝑽𝑻𝑯

𝑹𝒆𝒒 + 𝑹⇒ 𝟎. πŸ‘πŸ‘π‘¨.

Thevenin’s Theorem-Examples

Page 61: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

3. Obtain the Thevenin’s equivalent circuit and find the current through RL of 20 Ohms

Thevenin’s Theorem-Examples

Page 62: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Norton’s Theorem1. Norton’s Theorem

Statement: Any active linear complex bilateral electrical network between open circuited load

terminals can be replaced by a single practical current source between the same open circuited

load terminals.

A practical current source is a parallel combination of ideal current source and a resistor (DC

circuit)/Impedance(AC Circuits).

The Current source being equal to the current measured through the short circuited load

terminals, denoted as IN or ISC and Resistor/Impedance being equal to the equivalent Resistance

/ Impedance measured between open circuited load terminals, denoted as RN or ZN

Page 63: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Norton’s Theorem

Procedure to obtain Norton’s equivalent circuit.

Step-1: Identify the load element, remove the load element, name the load terminals and short the

load terminals.

Step-2: Find the short circuit current using any network analysis technique.

Step-3: Find the equivalent resistance/Impedance between the open circuited terminals by replacing

all independent sources by their internal impedances. (NOTE: RTH=RN)

Step-4: Replace the given circuit between the open circuited load terminals by the Norton’s

equivalent circuit.

Step-5: Connect the load element between the load terminals and find the required load quantity

using current division or voltage division formula.

NOTE:

β€’ For the circuits with dependent sources, find RN using the ratio=VOC/ISC; RTH=RN

β€’ Thevenin’s Theorem is the dual of Norton’s Theorem

β€’ Thevenin’s equivalent circuit can be converted into Norton’s Equivalent circuit and vice-

versa using source transformation

Page 64: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Norton’s TheoremExample:

2. Obtain the Norton’s equivalent circuit between the terminals A and B.

+_20 V

5

20

10

1.5 A

A

B

5

20

10 A

B

To find IN

𝑰𝑡 = 𝑰𝑨𝑩 = 𝑰𝑺π‘ͺ = π‘°πŸ‘

25I1 βˆ’ 20I3 = 20 βˆ’βˆ’ βˆ’(1)βˆ’20𝐼1 βˆ’ 10𝐼2 + 30𝐼3 = 0 βˆ’βˆ’ βˆ’ 2

𝐼2 = 1.5𝐴 βˆ’βˆ’ βˆ’(3)π‘°πŸ‘ = 𝟐. 𝟐. 𝑨

𝑰𝑡 = 𝑰𝑺π‘ͺ = π‘°πŸ‘ = 𝟐. πŸπ‘¨

To find RN

RAB = RTH = RN = 5||20 + 10𝐑𝐍 = πŸπŸ’π›€

𝐼1

𝐼2

𝐼3

Page 65: Network Theory(19EC33) 2020-21

`

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Norton's Theorem3. Obtain the Thevenin’s and Norton's equivalent circuit

between the terminals A and B.

To find IN

4𝐼1 βˆ’ 6𝐼π‘₯ + 6(𝐼1 βˆ’ 𝐼2) = 20 βˆ’βˆ’ βˆ’(1)4𝐼1 = 20; 𝐼1 = 5𝐴.

βˆ’6𝐼1 + 6𝐼2 = 0 βˆ’βˆ’ βˆ’ 2𝐼1 = 𝐼2

𝐼π‘₯ = 𝐼1 βˆ’ 𝐼2From (1), π‘°πŸ = π‘°πŸ = πŸ“π‘¨

𝑰𝒔𝒄 = 𝑰𝑡 = π‘°πŸ = πŸ“π‘¨.To find RN

RN =𝑉𝑂𝐢𝐼𝑆𝐢

To find VOC

4𝐼 βˆ’ 6𝐼π‘₯ + 6𝐼 βˆ’ 20 = 0𝐼π‘₯ = 𝐼𝑰 = πŸ“π‘¨.

𝑽𝑢π‘ͺ = πŸ” βˆ— πŸ“ = πŸ‘πŸŽπ‘½.

𝑹𝑡 =πŸ‘πŸŽ

πŸ“= πŸ” π‘Άπ’‰π’Žπ’”

𝐼1

𝐼2

𝐼3

𝐼1

𝐼2

Page 66: Network Theory(19EC33) 2020-21

Dept. of ECE, Dr. Ambedkar Institute of Technology, Bengaluru

Network Theory (19EC33)

Disclaimer

Some Contents and Images showed in this PPT have

been taken from the various internet sources and

from books for educational purpose only.

Thank You

?