Network Dynamics and Cell Physiology

31
Network Dynamics and Network Dynamics and Cell Physiology Cell Physiology John J. Tyson John J. Tyson Biological Sciences Biological Sciences Virginia Tech Virginia Tech

description

Network Dynamics and Cell Physiology. John J. Tyson Biological Sciences Virginia Tech. Collaborators. Funding Agencies. Kathy Chen Jill Sible Bela Novak Attila Csikasz. DARPA McDonnell Found. External signals. Growth Development. Internal Signals. Division Reproduction. - PowerPoint PPT Presentation

Transcript of Network Dynamics and Cell Physiology

Page 1: Network Dynamics and Cell Physiology

Network Dynamics andNetwork Dynamics andCell PhysiologyCell Physiology

John J. Tyson John J. Tyson

Biological Sciences Biological Sciences

Virginia TechVirginia Tech

Page 2: Network Dynamics and Cell Physiology

CollaboratorCollaboratorss

Kathy ChenKathy ChenJill SibleJill SibleBela Novak Bela Novak Attila CsikaszAttila Csikasz

Funding Funding AgenciesAgencies

DARPADARPAMcDonnell FoundMcDonnell Found

Page 3: Network Dynamics and Cell Physiology

Hanahan & Weinberg (2000)

Cell signaling

Externalsignals

InformationProcessing System

Death

DivisionReproduction

GrowthDevelopment

InternalSignals

Page 4: Network Dynamics and Cell Physiology

Information Processing Systems

Laptop CellSilicon Carbon

Solid state Watery

Programmable Hard-wired

Precise Sloppy

Digital Analog

Sequential Parallel

Manufactured Self-reproducing

Designed Evolved

Silicon Carbon

BrainCarbon

Membrany

Learning

Accurate

Analog/digital

Parallel

Soma/germ

Evolved

Carbon

$$

Page 5: Network Dynamics and Cell Physiology

Hanahan & Weinberg (2000)

Signal Transduction Network

p21

Smad

MAPK

MKK

MAPK-P

PP2A

Page 6: Network Dynamics and Cell Physiology

R

S

0

0.5

0 1 2 3

res

po

ns

e (

R)

signal (S)

linear

0

5

0 0.5 1

S=1

R

rate

(d

R/d

t)

rate of degradation

rate of synthesis

S=2

S=3

Gene Expression

Signal-ResponseCurve

1 2

d,

d

Rk S k R

t 1

ss2

k SR

k

Page 7: Network Dynamics and Cell Physiology

R

Kinase

RP

ATP ADP

H2OPi

Protein Phosphorylation

0

1

2

0 0.5 1

RP

rate

(d

RP

/dt)

0.25

0.5

1

1.5

2

Phosphatase 0

0.5

1

0 1 2 3

res

po

ns

e (

RP

)

Signal (Kinase)

“Buzzer”

Goldbeter & Koshland, 1981

1 R 0

Page 8: Network Dynamics and Cell Physiology

R

S

EP E0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5R

rate

(d

R/d

t) S=0

S=8

S=16

0

0.5

0 10

res

po

ns

e (

R)

signal (S)

Protein Synthesis:Positive Feedback

“Fuse”Bistability

Closed

Open

Griffith, 1968

Page 9: Network Dynamics and Cell Physiology

Example: Fuse

0

0.5

0 10

resp

on

se (

R)

signal (S)

dying

Apoptosis(Programmed Cell Death)

living

Eissing et al. (2004) J Biol Chem 279:36892

Page 10: Network Dynamics and Cell Physiology

R

S = Rtotal

E EP0

0.5

1

0 0.5 1 1.5

R

E

Coupled Buzzers

0

0.5

1

0 1 2

res

po

ns

e (

R)

signal (S)

SN

SN

“Toggle”Bistability

RP

S=0.5 S=1.5S=1

Page 11: Network Dynamics and Cell Physiology

Frog egg

MPF

Cdc25-PCdc25

MPF-P

Wee1

0

0.5

1

0 1 2

resp

on

se (

MP

F)

signal (cyclin)

interphase

met

apha

se

(inactive)

S = Total Cyclin

CycBMPF =

M-phase Promoting Factor

Page 12: Network Dynamics and Cell Physiology

02468

101214

0 6 12 18 24 30 60

MPF activity depends on total cyclin concentration

and on the history of the extract

Cyclin concentration increasing

inactivation threshold at 90 min

MP

F a

ctiv

ity

nM cyclin B

M

IIIIII

02468

101214

0 6 12 18 24 30 60

MP

F a

ctiv

ity

nM cyclin B

M

M

MI/MIII

Cyclin concentration decreasing

I M

bistabilityWei Sha & Jill Sible (2003)

Page 13: Network Dynamics and Cell Physiology

Oscillations

0

0.5

1

0 1 2

MP

F

cyclin

MPF

Cdc25-PCdc25

MPF-P(inactive)

cyclin synthesis

cyclin degradationAPC

negative feedback loop

0.0 0.5

0

1

signal (rate of cyclin synthesis)

Hopf Hopf

res

po

ns

e (

MP

F)

sss

sssuss

Page 14: Network Dynamics and Cell Physiology

Pomerening, Kim & FerrellCell (2005)

Page 15: Network Dynamics and Cell Physiology

If knock-out positive feedback loop, then oscillations become faster and smaller amplitude…

Figure 4. Pomerening, Kim and Ferrell

With + feedback Without + feedback

Page 16: Network Dynamics and Cell Physiology

P Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

CycB

APC-PAPCTFBI

TFBA

Cdc14

Cdc14

Cdc14

Cdc25

MPF

Page 17: Network Dynamics and Cell Physiology

P Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

TFEA

TFEI

CycE

TFIA

TFII

Cdc20

Cdc14

Cdc14

Cdc14

CycA

CycB

CycD

Cdh1CycD

Cdc25

SPF

Page 18: Network Dynamics and Cell Physiology

primed RC

fired RC primed MEN

fired MEN

Cdk1

CycB

high MPF

low MPF

high SPF

low SPF

Cdk2

CycA

Cell Cycle Regulation

Page 19: Network Dynamics and Cell Physiology

Cdk2

CycA

LicensingFactor

ReplicationComplex time

Csikasz-Nagy & Novak, 2005

SPF

“Cock-and-Fire”

Page 20: Network Dynamics and Cell Physiology

Cdk1

CycB

Primer

Mitotic ExitNetwork

time

Csikasz-Nagy & Novak, 2005

MPF

Page 21: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

mass/nucleus

Fission Yeast

bistable switch

bistable switch

neg fdbk osc

Page 22: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

mass/ DNA

0.0 0.5 1.0 1.5

Cdc2

/Cdc1

3

10-5

10-4

10-3

10-2

10-1

100

G1

Mmass/ DNA

0 1 2

Cdc2

/Cdc1

3

10-3

10-2

10-1

100

S/G2

M

mass/nucleus

mass/ DNA

0.0 0.5 1.0 1.5 2.0

Cdc2

/Cdc1

3

0.1

1

M

Fission Yeast

Page 23: Network Dynamics and Cell Physiology

0 1 2 3 4 5

0

0.4

0.8

3.0

mass/nucleus

Cd

k1:C

ycB

G1S/G2

MWild type

SNIC

Page 24: Network Dynamics and Cell Physiology

SNICSNIC BifurcationBifurcation

Invariant Circle

Limit Cycle

x2

p1

node

saddle

Saddle-Node on anInvariant Circle

max

min

max

SNIC

Page 25: Network Dynamics and Cell Physiology

0 1 2 3 4 5

0

0.4

0.8

3.0

mass/nucleus

Cd

k1:C

ycB

G1S/G2

MWild type

cell divisionG1

S/G2

enter Mexit M

Page 26: Network Dynamics and Cell Physiology

Genetic control of cell size at cell division in yeastPaul NurseDepartment of Zoology, West Mains Road, Edinburgh EH9 3JT, UK

Nature, Vol, 256, No. 5518, pp. 547-551, August 14, 1975

wild-type wee1

Page 27: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

Page 28: Network Dynamics and Cell Physiology

wee1

mass/nucleus

Cd

k1:C

ycB

0 1 2 3 4 5

0

0.4

0.8

1.2

G1

S/G2

M

wee1wee1 cells are about one-half the size of wild type cells are about one-half the size of wild type

Page 29: Network Dynamics and Cell Physiology

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

Two-parameter Bifurcation Diagram

cell mass (au.)

Wee

1 ac

tivity

wild-type

B

SN2

SN1

wee1-

<30 60 90

120

150

180 210

240 270 300

period(min)

300<

HB1 2 x wee1+

Gen

etic

s

Physiology

wee1+/-

Page 30: Network Dynamics and Cell Physiology

? ?

Page 31: Network Dynamics and Cell Physiology

• Tyson, Chen & Novak, “Network dynamics and cell physiology,” Nature Rev. Molec. Cell Biol. 2:908 (2001).

• Tyson, Csikasz-Nagy & Novak, “The dynamics of cell cycle regulation,” BioEssays 24:1095 (2002).

• Tyson, Chen & Novak, “Sniffers, buzzers, toggles and blinkers,” Curr. Opin. Cell Biol. 15:221 (2003).

• Csikasz-Nagy et al., “Analysis of a generic model of eukaryotic cell-cycle regulation,” Biophys. J. 90:4361 (2006).

References