Negative refraction in photonic crystals Mike Kaliteevski Durham University.

73
Negative refraction in photonic crystals Mike Kaliteevski Durham University

Transcript of Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Page 1: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Negative refraction in photonic crystals

Mike KaliteevskiDurham University

Page 2: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Outine•Photonic Crystals: Introduction

•Negative refraction in left-handed material•Non-diffracting beams •Electromagnetic wiggler

Page 3: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Bragg reflector

r

n1 n2

t

21

21

nn

nnr

21

12

nn

nt

Page 4: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Bragg reflector

n1r n1

d2

n2

tndrndt

2

02

0

2exp

2exp

0

22

02

0

4122

nd

ndnd2

02 4n

d

Page 5: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Bragg reflector

r

n1 n2 n1n2

d2d2

1

01 4n

d

Periodic sequence of the pairs of quarterwave layers is the Bragg reflector. The waves, reflected from different boundaries experience positive interference (enforce each other).

Page 6: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Bragg reflector

BRBRBR ir /)(exp

0,8 1,0 1,20,0

0,2

0,4

0,6

0,8

1,0

-

Arg

(r)

R

Energy, eV

210

21

nnn

nn

Page 7: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Bloch theorem. Dispersion relations

)exp()()( iKzzuzE KK

H

EiKD

H

ET D )exp(ˆ )(

0ˆ)exp(ˆdet )( IiKDT D

KDTT DD cos2ˆˆ )(22

)(11

)sin()sin(2

1)cos()cos()cos( 022011

1

2

2

1022011 kdnkdn

n

n

n

nkdnkdnKD

Page 8: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

0

0

0

0 Densityof modes

Densityof modes

k

Im(k)

Im(k)

k /D

/D0

0

1

1 0

0Reflectivity

Reflectivity

BR = c/(n1d1+n2d2)

BRBR

Formation of the photonic band gap in periodic structures

Page 9: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Probability of spontaneous emission

22

22EuedlW

Page 10: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Probability of spontaneous emission

L

LEEnergy 22/

22

22EuedlW

/L )2/(2 LE

Page 11: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Microcavity

Page 12: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Microcavity

L

nRR

n2

n1

Electric field

Magnetic field

0

1

/0

R

Page 13: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Probability of spontaneous emission

L

L

Page 14: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

2D Photonic crystal

Page 15: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

1D photonic crystal

Page 16: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

2D photonic crystal

Page 17: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

2D photonic crystal

Page 18: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Dispersion relations in 2D photonic crystal

k

)exp()()( rkirvrH

kk

)()( arvrvkk

)()( arr

Page 19: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Plane waves method

a

)()()(

12

2

rHc

rHr

rGiGr G

exp)()(

1

)exp()()( rkirvrHkk

)(

1

)(

1

arr

)()( arvrvkk

rGkiGkHrHG

k

exp),()(

Bloch theorem

Wave equation

G

Lattice vector

Reciprocal lattice vector

Page 20: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Plane waves method

G

)()()(

12

2

rHc

rHr

Wave equation

Reciprocal lattice vector

),()',(')''(2

2

'

GkHc

GkHGkGkGGG

k

Page 21: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

2D photonic crystals

H E

Page 22: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

0.0

0.1

0.2

0.3

0.4

0.5Fr

eque

ncy,

c/d

K KM

TE

K M

0.0

0.1

0.2

0.3

k

k

Freq

uenc

y, c

/d

K KM

K M

TM

Disperison relations

H

E

Page 23: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Complete PBG

Page 24: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Transmissiom of light

d=50m

TT

TT

1d=60m

d=70m

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

1

1

0

0

0

d=80m1

0

f, THzExperiment Modelling

Page 25: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

PC spectral filter

0.4 0.8 1.2 1.6 2.0 2.4

T

1

0

f, THz

D

G

a

a

Page 26: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Defects in photonic crystals

0,0

0,1

0,2

0,3

0,4

0,5

Fre

quen

cy, c

/d

m = 1

m = 1

m = 2

m = 2

m = 0

m = 3

Page 27: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Photonic crystal waveguide

Page 28: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

PC Waveguide

Page 29: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

OE_15_12982

3D Photonic crystals

Page 30: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Transmission of light and bandstructure in opals and inverse opals.

Page 31: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Photonic microstructures in nature

Page 32: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Negative refraction in left-handed material

Page 33: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Right - hand materials

2

000 Enk

kHE

00

kS

0grv

0 n

•Usual electromagnetic word

Page 34: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Left - hand materials

V.G.Veselago, Electrodinamics of the materials with negative dielectric and magnetic constant (1967)

2

000 Enk

kHE

00

kS

0grv

0 n

•Inversed Doppler effect•Inversed Vavilov – Cherenkov effect•Negative refraction

Page 35: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Refraction

Page 36: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

kS

Positive refraction

Page 37: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

kS

Negative refraction

Page 38: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Left - hand materials

kS

0grv

Negative refraction

Flat Lense

Page 39: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

L

n1 n2

A

D

ALD

Flat lence

n1

n2 =-n1

Page 40: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Superlence ???

L

n1 n2

A

D

ALD

n1

n2 =-n1

Comment: John Michael Williams, Some Problems with Negative Refraction, Phys. Rev. Lett. 87, 249703 (2001) Comment: G. W. 't Hooft, Comment on “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 87, 249701 (2001) Reply: M. Nieto-Vesperinas and N. Garcia, Nieto-Vesperinas and Garcia Reply:, Phys. Rev. Lett. 91, 099702 (2003)

J. B. Pendry , Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85, 3966 - 3969 (2000)

Автор ввел понятие "суперлинза", ...утверждая, что для этого устройства отсутсвует дифракционный предел. Наверное, наиболее убедительное доказательство ошибочности подобного рода утверждений можно найти в ... [ В.Г.Веселаго, УФН, 173 (7) 790 (2003) ]

With a conventional lens sharpness of the image is always limited by the wavelength of light. An unconventional alternative to a lens, a slab of negative refractive index material, has the power to focus all Fourier components of a 2D image, even those that do not propagate in a radiative manner. Such “superlenses” .....

Page 41: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Realization of left-hand materials

MetamaterialsPhotonic crystals

Page 42: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Negative refraction in photonic crystals

Band 2

fX

1.0

1.2

1.4

1.6

1.8

Band 1

fJ

XJ

f, T

Hz

vgr<0

vgr>02D hexagonal metallic PC, D =200 microns, d = 60 microns

Page 43: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Negative refraction in 2D hexagonal photonic crystals

Band 2

fX

1.0

1.2

1.4

1.6

1.8

Band 1

fJ

XJ

f, T

Hz

Page 44: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

PRF

NRF

IFSOURCE

(a)

PRF

NRF

IFSOURCE

(a)

PRF

NRF

IFSOURCE

(b)

Refraction of wave in photonic crystal prism

vgr<0Band 2

fX

1.0

1.2

1.4

1.6

1.8

Band 1

fJ

XJ

f, T

Hz

vgr>0

Page 45: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Refraction of wave in photonic crystal prism

0.5 1.0 1.5 2.0

T1

0

f, THz

PRF

NRF

IFSOURCE

(a)

PRF

NRF

IFSOURCE

(a)

PRF

NRF

IFSOURCE

(b)

Page 46: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Refraction of wave in photonic crystal prism

0.5 1.0 1.5 2.0

T

1

0

f, THz

PRF

NRF

IF

SOURCE

(c)

PRF

NRF

IF

SOURCE

(c)

Band 2

fX

1.0

1.2

1.4

1.6

1.8

Band 1

fJ

XJ

f, T

Hz

Page 47: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

PRF

NRF

IFSOURCE

Refraction of wave in photonic crystal prism

1n

Page 48: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Experimental study of negative refraction

Page 49: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Experimental study of negative refraction of THz

using QCL

Page 50: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Experimental study of negative refraction of THz

using QCL

SIGNAL WITHOUT SAMPLE

Negatively refracted beam

Page 51: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Non-diffracting beams

W

W sin

Page 52: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

L

l1l2

A

D

0 AnLD /

An

LALD

22

2

sin

sin1

tan

tan

nsin D

Non-diffracting beams

n1 n2 n1

21 nn

11 n02 n

Page 53: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

0 AnLD /

An

LALD

22

2

sin

sin1

tan

tan

nsin D

Non-diffracting beams

21 n

11 n02 n

L

l1l2

A

D

L

l1l2

A

D

n1 n2 n1

1.0

1.2

1.4

1.6

f, T

Hz

-0.5 0 XJneff

Page 54: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

L

L

L

D0

D0

A

(c)

(b)

(a)

A

16275 m

4000

m

Non-diffracting beams

Page 55: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

L

L

L

D0

D0

A

(c)

(b)

(a)

A

16275 m

4000

m =185m

=180m

-2 -1 0 1 2

I n

t e n

s i

t y, a

. u.

=175m

Position, mm

(a)

(b)

(c)

Non-diffracting beams

1.0

1.2

1.4

1.6

f, T

Hz

-0.5 0 XJneff

Page 56: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Negative refraction in 1D photonic crystals

n1 n2

d1 d2

Page 57: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Problem: Veselago lens based on 1D PC Bragg reflector does not work.

Because system is anisotropic: negative effective mass is required for negative refraction, and for 2nd , 4th , etc bands mz<0, but always mx>0

Page 58: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

0 0

0

2 2

( , ) [exp( ) exp( )]exp( )

2

( / )

Ry p p p p

p

p

p p

E x z i x R i x iK z

pK K

D

c K

n1 n2

d1 d 2

x

zK

0

1

( , ) ( ) exp( )Brm m m

m

E x z a u z i x

0 0

0

2 2

( , ) [exp( ) exp( )]exp( )

2

( / )

Ry p p p p

p

p

p p

E x z i x R i x iK z

pK K

D

c K

Field of the wave in the structure

Page 59: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Modes in Bragg reflector

0),,( 2 Kf

1 2 1 2

1( ) cos( )cos( ) sin( )sin( ) cos( ) 0

2f d d d d KD

2 2 21( / )n c

2 2 22 ( / )n c

Page 60: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Amplitude of waves

* * *1,1 0,1 ,1

* * *, 0, ,

1 1,1 1 ,

1 100 0,1 1 0 0,

1 1,1 1 ,

1 0

0 1

1 0 0

0 1

1 0

0 0 1

P P

mP M M P M

PP P P P M M

M M

PP P P P M M

aJ J J

aJ J J

RJ J

RJ J

RJ J

*0,1

*0,

0

1

0

M

J

J

*0[ ]p p pn n

p

R J a

0

1

[ ]q q q m m qmm

R a J

Page 61: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

-3000 -2500 -2000 -1500 -1000 -500 0-0.5

0.0

0.5

1.0

1.5

2.0

2.5

log 1

0(|a

m|2 )

f (2 )

21E-3

0.01

0.1

1

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500

-4

-2

0

2

4

log 1

0(|a

m|2 )

f (2

)

21E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

High contrast:n1=3.7n2=1

Low contrast:n1=1.4n2=1.8

Page 62: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

-40 -20 0 20 40

-3

-2

-1

0

1

2

3

KD

(m -1)

6

-40 -30 -20 -10 0 10 20 30 40

-3

-2

-1

0

1

2

3

KD

(m -1)

5

-30 -20 -10 0 10 20 30

-3

-2

-1

0

1

2

3

KD

(m -1)

4

0 1 2 30.0

0.5

1.0

1.5

2.0

2.5

3.0

45

6

3

2

( eV

)

KD

1-20 -15 -10 -5 0 5 10 15 20

-3

-2

-1

0

1

2

3

KD

(m -1)

3

-5 -4 -3 -2 -1 0 1 2 3 4 5-2

-1

0

1

2

KD

(m -1)

1

-8 -6 -4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

KD

(m -1)

2

Page 63: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

0 1 2 30.0

0.5

1.0

1.5

2.0

2.5

3.0

( eV

)

KD

-5 -4 -3 -2 -1 0 1 2 3 4 5-2

-1

0

1

2

KD

(m-1) aa

Page 64: Negative refraction in photonic crystals Mike Kaliteevski Durham University.
Page 65: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

0 1 2 30.0

0.5

1.0

1.5

2.0

2.5

3.0

( eV

)

KD

-30 -20 -10 0 10 20 30

-3

-2

-1

0

1

2

3

KD

(m-1)

bb

Page 66: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Negative refraction

Page 67: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

cc

0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

, <S

z>K

frequency (eV)

photonicband gap

negativerefractionarea

DKS z 0sin~

Normal channelling

Page 68: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Normal channelling

Page 69: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

-3000 -2500 -2000 -1500 -1000 -500 0-0.5

0.0

0.5

1.0

1.5

2.0

2.5

log 1

0(|a

m|2 )

f (2 )

21E-3

0.01

0.1

1

Low contrast:n1=1.4n2=1.8

xS z )(cos 21

Electromagnetic wiggler

Page 70: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Electromagnetic wggler

Page 71: Negative refraction in photonic crystals Mike Kaliteevski Durham University.
Page 72: Negative refraction in photonic crystals Mike Kaliteevski Durham University.

Conclusion:

• One can hardly make Veselago lense based 1D photonic crystal

• But there are some interesting effects like “electromagnetic snake”, normal channeling, etc.

Page 73: Negative refraction in photonic crystals Mike Kaliteevski Durham University.