Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS...

26
Necessary District Instructional Shifts •K-5 science inclusion •6 th grade science core subject •MS pathway •HS pathways/alignment •School Resources

Transcript of Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS...

Page 1: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Necessary District Instructional Shifts• K-5 science inclusion• 6th grade science core subject• MS pathway• HS pathways/alignment • School Resources

Page 2: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Fresno Unified NGSS Timeline• 2014/2015: Awareness Phase (communication plan)

• Attended State NGSS Roll-out Symposiums• MS iPL training on SEP and Scope and Sequence• HS 9th grade iPL& Secondary Cycle 1 training on SEP• Design Scope and Sequences for 6th-8th • Create 6th grade science units for end of year and PL • May 2015: 5th, 8th, 10th taking Science CST

• 2015/2016: Transition Phase (communication plan)• Begin using NGSS standards in 6th, 7th , 8th • Building foundational resources, implementation needs assessments, PD opportunities• Scope and SequencesK-5 and HS once State framework is approved

• 2016/2017: Implementation Phase (communication plan)• Fully aligned curriculum, instruction and assessments

Page 3: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Transition to Next Generation Science

StandardsAdd the “tag line” that we decided on in San Diego

Page 4: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Current Science Instruction (1998 Standards)KinderLife Sciences Different types of plants and animals inhabit the earth. As a basis for understanding this concept: • a. Students know how to observe and describe similarities and

differences in the appearance and behavior of plants and animals (e.g., seed-bearing plants, birds, fish, insects).

• b. Students know stories sometimes give plants and animals attributes they do not really have.

• c. Students know how to identify major structures of common plants and animals (e.g., stems, leaves, roots, arms, wings, legs).

Page 5: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

NGSSKinder

K-LS1 From Molecules to Organisms: Structures and Processes Students who demonstrate understanding can: K-LS1-1. Use observations to describe patterns of what plants and animals (including humans) need to survive.

[Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and, that all living things need water.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations. Use observations (firsthand or from

media) to describe patterns in the natural world in order to answer scientific questions. (K-LS1-1)

----------------------------------------------- Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence Scientists look for patterns and order

when making observations about the world. (K-LS1-1)

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms All animals need food in order to live

and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow. (K-LS1-1)

Crosscutting Concepts

Patterns Patterns in the natural and human

designed world can be observed and used as evidence. (K-LS1-1)

Connections to other DCIs in kindergarten: N/A Articulation of DCIs across grade-bands: 1.LS1.A (K-LS1-1); 2.LS2.A (K-LS1-1); 3.LS2.C (K-LS1-1); 3.LS4.B (K-LS1-1); 5.LS1.C (K-LS1-1); 5.LS2.A (K-LS1-1) Common Core State Standards Connections: ELA/Literacy – W.K.7 Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express

opinions about them). (K-LS1-1) Mathematics – K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has “more of”/”less of” the

attribute, and describe the difference. (K-LS1-1)

Page 6: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Current Science Instruction (1998 Standards)5th

Life Sciences Plants and animals have structures for respiration, digestion, waste disposal, and transport of materials. As a basis for understanding this concept: a. Students know many multicellular organisms have specialized structures to support the transport of materials. • b. Students know how blood circulates through the heart chambers, lungs, and body

and how carbon dioxide (CO2) and oxygen (O2) are exchanged in the lungs and tissues.

• c. Students know the sequential steps of digestion and the roles of teeth and the mouth, esophagus, stomach, small intestine, large intestine, and colon in the function of the digestive system.

• d. Students know the role of the kidney in removing cellular waste from blood and converting it into urine, which is stored in the bladder.

• e. Students know how sugar, water, and minerals are transported in a vascular plant. • f. Students know plants use carbon dioxide (CO2) and energy from sunlight to build

molecules of sugar and release oxygen. • g. Students know plant and animal cells break down sugar to obtain energy, a process

resulting in carbon dioxide (CO ) and water (respiration)

Page 7: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

NGSS5th

5-LS1 From Molecules to Organisms: Structures and Processes Students who demonstrate understanding can: 5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification

Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12

Science Education:

Science and Engineering Practices

Engaging in Argument from Evidence Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s). Support an argument with evidence, data, or

a model. (5-LS1-1)

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for

growth chiefly from air and water. (5-LS1-1)

Crosscutting Concepts

Energy and Matter Matter is transported into, out of, and

within systems. (5-LS1-1)

Connections to other DCIs in fifth grade: 5.PS1.A (5-LS1-1) Articulation of DCIs across grade-bands: K.LS1.C (5-LS1-1); 2.LS2.A (5-LS1-1); MS.LS1.C (5-LS1-1) Common Core State Standards Connections: ELA/Literacy – RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text.

(5-LS1-1) RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably.

(5-LS1-1) W.5.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-LS1-1) Mathematics – MP.2 Reason abstractly and quantitatively. (5-LS2-1) MP.4 Model with mathematics. (5-LS2-1) MP.5 Use appropriate tools strategically. (5-LS2-1) 5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to

0.05 m), and use these conversions in solving multi-step, real world problems. (5-LS1-1)

Page 8: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Current Science Instruction (1998 Standards)HSCell BiologyThe fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism’s cells. As a basis for understanding this concept:a. Students know cells are enclosed within semipermeable membranes that regulate their interaction with their surroundings.b. Students know enzymes are proteins that catalyze biochemical reactions without altering the reaction equilibrium and the activities of enzymes depend on the temperature, ionic conditions, and the pH of the surroundings.c. Students know how prokaryotic cells, eukaryotic cells (including those from plants and animals), and viruses differ in complexity and general structure.d. Students know the central dogma of molecular biology outlines the flow of information from transcription of ribonucleic acid (RNA) in the nucleus to translation of proteins on ribosomes in the cytoplasm.e. Students know the role of the endoplasmic reticulum and Golgi apparatus in the secretion of proteins. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.g. Students know the role of the mitochondria in making stored chemical-bond energy available to cells by completing the breakdown of glucose to carbon dioxide.h. Students know most macromolecules (polysaccharides, nucleic acids, proteins, lipids) in cells and organisms are synthesized from a small collection of simple precursors.i.* Students know how chemiosmotic gradients in the mitochondria and chloroplast store energy for ATP production. j* Students know how eukaryotic cells are given shape and internal organization by a cytoskeleton or cell wall or both.

Page 9: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

NGSSHS

HS-LS1 From Molecules to Organisms: Structures and Processes Students who demonstrate understanding can: HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins

which carry out the essential functions of life through systems of specialized cells. [Assessment Boundary: Assessment does not include identification of specific cell or tissue types, whole body systems, specific protein structures and functions, or the biochemistry of protein synthesis.]

HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]

HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise, stomate response to moisture and temperature, and root development in response to water levels.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]

HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. [Assessment Boundary: Assessment does not include specific gene control mechanisms or rote memorization of the steps of mitosis.]

HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]

HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. [Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations.] [Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of macromolecules.]

HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy. [Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.] [Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas

Crosscutting Concepts

Page 10: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

NGSS Conceptual Shifts1. K-12 Science Education Should Reflect the Interconnected Nature of

Science as it is Practiced and Experienced in the Real World.2. The NGSS are student performance expectations – NOT Curriculum.3. The Science Concepts in the NGSS Build Coherently from K-12.4. The NGSS Focus on Deeper Understanding of Content as well as

application of Contents.5. Science and Engineering are Integrated in the NGSS, from K-12.6. The NGSS are designed to prepare students for college, career, and

citizenship.7. The NGSS and Common Core State Standards (ELA and Math) are

Aligned.

Page 11: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Instructional Shifts

• ALL standards, ALL students• 3 dimensions: Science and Engineering Practices, Cross-Cutting

Concepts, Disciplinary Core Idea• Linking of CCSS, math, literacy• 3 grade bands

• K-5• MS (6-8)• HS

Page 12: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Science and Engineering Practices

• Practices represent what students are expected to do, and are not teaching methods or curriculum.

• Practices are not separate; they intentionally overlap and interconnect.

• Performance expectations focus on some but not all capabilities associated with a practice.

• Engagement in practices is language intensive and require students to participate in classroom science discourse.

• Practices build developmentally from Kinder - High School.

Page 13: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Science and Engineering Practices

1. Asking questions (science) and defining problems (engineering)2. Developing and using models3. Planning and carrying out investigations4. Analyzing and interpreting data5. Using mathematics and computational thinking6. Constructing explanations (science) and designing solutions

(engineering)7. Engaging in argument from evidence8. Obtaining, evaluating, and communicating information

Page 14: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Crosscutting Concepts

• Help students better understand core ideas in science and engineering• Help students better understand science and engineering practices• Repetition in different contexts will be necessary to build familiarity• Grow in complexity and sophistication across the grades• Provide a common vocabulary for science and engineering• Should not be assessed separately from practices or core ideas• Performance expectations focus on some buy not all capabilities associated

with a crosscutting concept• Are for all students• Inclusion of Nature of Science and Engineering Concepts

Page 15: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Cross-Cutting Concepts

1. Patterns2. Cause and effect3. Scale, proportion, and quantity4. Systems and system models5. Energy and matter6. Structure and function7. Stability and change

Page 16: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Disciplinary Core Ideas

• Four domains• Physical sciences (chemistry and physics)• Life science• Earth science and space science• Engineering, technology and applications of science

• Each domain is broken into 3 or 4 component ideas

Page 17: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Performance Expectation

• What students must be able to do• They are student outcomes, explicitly NOT curriculum

Page 18: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Development Timeline

Page 19: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

K-5

• Organized by grade level• Progressions increase in sophistication• Defines what students are able to do at the end of each grade• Foundational knowledge for each Crosscutting Concept, Science &

Engineering Principle, and Disciplinary Core Idea• CCSS and Math linked/aligned

Page 20: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

6th Grade

• 6th grade is starting line for MS pathway• Need to make instructional shifts:

• part of MS curriculum• Science as a core subject

Page 21: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

Middle School Pathway

• Preferred Pathway or Optional Pathway• Organized by grade band 6-8• All MS standards must be completed by the end of the grade band, regardless of

model

• Preferred Pathway- integrated• 6th -8th- all domains & engineering design

• Optional Pathway- curriculum discreet• 6th- Earth• 7th- Life• 8th- Physical• 6th -8th- engineering design

Page 22: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

MS Pathway Implications

• Preferred Model- only officially adopted pathway• Integrated model: 6th grade- 19 PE, 30 DCI; 7th grade- 22 PE, 37 DCI; 8th

grade- 26 PE, 38 DCI• Optional model: 6th grade- 19 PE, 52 DCI; 7th grade- 24 PE, 52 DCI; 8th

grade- 23 PE, 43 DCI• Preferred Model more directly aligns with CCSS• Preferred Model implementation supported by the state

Page 23: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

HS Pathway

• All standards must be completed by 12th grade• At district discretion to choose pathways to meet educational needs• Need thoughtful organization of standards into courses for post-

secondary success, including A-G and NCAA compliance

Page 24: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

State NGSS Timeline• 2014/2015: Awareness Phase

• State NGSS Roll-out Symposiums• May 2015: 5th, 8th, 10th taking Science CST

• 2015/2016: Transition Phase• Begin using NGSS standards• Building foundational resources, implementation needs assessments, PD

opportunities• Transitional sequencing to prevent gaps• January 2016: deadline SBE to approve State Science Curriculum Framework • April/May 2016: possible new science assessments to meet ESEA requirements

• 2016/2017: Implementation Phase• Fully aligned curriculum, instruction and assessments

Page 25: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

District Science Buckets• Safety

• Teacher, student and sites district wide• Materials ordering and storage• OSHA compliance• Testing, contracts and documentation retention

• Curriculum• Pathway designation- MS & HS• Course design and alignment- MS & HS• NCAA and A-G compliance- HS

• Teacher Development• K-5• 6th • 7-8• 9-12

Page 26: Necessary District Instructional Shifts K-5 science inclusion 6 th grade science core subject MS pathway HS pathways/alignment School Resources.

District Key Points• Internal transition timeline

• MS pathway decision• Scope and sequence- transitional to eliminate gaps• Scope and sequence- full implementation

• HS pathway decision• Scope and sequence- transitional to eliminate gaps• Scope and sequence- full implementation

• PD for science teachers• NGSS, SEP, CCC, DCI

• Specialty work for 6th grade• PD for K-5

• Aligning scope and sequence• Science content knowledge

• Safety• A-G and NCAA compliance• Assessment dates• Full implementation