Near-field optics and plasmonics - Uni Ulm › fileadmin › website_uni_ulm › ...Pohl, Denk and...

12
Near-field optics and plasmonics Manuel Rodrigues Gonçalves 0 2 4 6 8 10 y / (μm) 0 2 4 6 8 10 x / (μm) 60 80 100 120 140 nm AFM topography Pol. Physik M. Sc. Master Advanced Materials Winter semester 2011/2012

Transcript of Near-field optics and plasmonics - Uni Ulm › fileadmin › website_uni_ulm › ...Pohl, Denk and...

  • Near-field optics and plasmonics

    Manuel Rodrigues Gonçalves

    0

    2

    4

    6

    8

    10

    y / (

    µm)

    0 2 4 6 8 10x / (µm)

    60 80 100 120 140nm

    AFM topography

    Pol.

    Physik M. Sc. Master Advanced MaterialsWinter semester 2011/2012

  • From sub-wavelength optics to nano-optics

    Synge propose in 1928 (in a letter to Einstein) a method to

    resolve optically an object below the diffraction limit.

    E. H. Synge, "A suggested method for extending the microscopic resolution into the ultramicroscopic region", Phil.

    Mag. 6, 356 (1928).

    Ash and Nicholls have done the first measurements with lateral

    sub-wavelength resolution using microwaves.

    E.A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope", Nature 237, 510 (1972).

    Pohl, Denk and Lanz developed the first Scanning Near-Field

    Optical Microscope (SNOM or NSOM).

    D.W. Pohl, W. Denk, and M. Lanz,"Optical stethoscopy: Image recording with resolution λ/20", Appl. Phys. Lett. 44,

    651 (1984).

    Nano-optics emerged as a new domain in optics encompassing

    Near-field optics, plasmonics, nano-emitters and non-classical

    light sources, sub-wavelength confinement of light.

  • Nano-optics

    Metamaterials

    emittersQuantum

    Nano−optics

    Surface−enhanced

    Extraordinary

    Surface−plasmon photonics

    Optical MicroscopyScanning Near−field

    Scanning microscopy

    scattering (SERS, TERS)

    optical transmission

    Enhanced photovoltaics

    Light scattering

  • Diffraction limit vs. SNOM resolution

    Abbe (Rayleigh) resolution d ≈1.22λ

    2n sin(θ)

    D.W. Pohl, et al., "Optical stethoscopy: Image recording with resolution λ/20", Appl. Phys. Lett. 44, 651 (1984).

  • Nanofabricated structures: Far-field vs. near-field

    Confocal microscope (far-field) SNOM microscope (near-field)

    0

    1

    2

    3

    4

    5

    y / (

    µm)

    0 1 2 3 4 5x / (µm)

    50 100a.u.

    CONFOCAL REFL.

    0

    1

    2

    3

    4

    5

    y / (

    µm)

    0 1 2 3 4 5x / (µm)

    200

    400

    600counts

    SNOM (light intensity)

  • Plasmonics in the past: the Lycurgus cup

    The Lycurgus cup: Late Roman Empire. 4th century AD. (With permission of the British Museum).

  • From surface waves to plasmonics

    Wood discovers anomaly in the optical spectrum of metal

    diffraction gratings

    R. W. Wood, Phil. Mag. (Ser. 6), "On a remarkable case of uneven distribution of light in a diffraction grating

    spectrum", 4, 396 (1902).

    Mie publisches the teatrise on light scattering by small particles

    G. Mie “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”, Ann. der Physik, Vierte Folge, 25, 377

    (1908).

    Zenneck and Sommerfeld study the propagation of

    electromagnetic waves on surfaces

    J. Zenneck “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre

    Beziehung zur drahtlosen Telegraphie”, Ann. der Physik, 328, 846 (1907).

    A. Sommerfeld “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie”, Ann. der Physik, 333, 665 (1909).

  • From surface waves to plasmonics

    Ritchie relates losses in electron beam crossing thin metal foils

    with surface plasmons

    R. H. Ritchie "Plasma losses by fast electrons in thin films", Phys. Rev., 106, 874 (1957).

    Otto and Kretschmann and Raether present alternative systems

    for excitation of surface plasmons using light

    A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection", Z. für

    Phys., 216, 398 (1968).

    E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light", Z. Naturforsch.

    A, 23A, 2135 (1968).

  • Modern applications of plasmonics

    Surface plasmon resonance based sensors

    Light confinement at nanostructures

    Light scattering mediated by surface plasmons

    Enhanced optical transmission on arrays of apertures

    High-Q systems and whispering gallery modes

    Surface enhanced Raman scattering

  • NFO and Plasmonics: Topics

    1 Fundamental concepts of EM waves: scattering, propagation,

    focusing

    2 Angular spectrum representation of EM waves

    3 Near-fields and far-fields

    4 Confocal microscopy and SNOM: methods, probes

    5 Surface plasmon-polaritons (SPPs)

    6 SPPs at small particles: Mie theory, scattering, field

    enhancements

    7 Applications of near-field enhancements: surface enhanced

    Raman scattering (SERS), enhanced fluorescence, spontaneous

    emission enhancement

    8 Simulation methods for nano-optics: DDA, FDTD, FEM, etc.

    9 Plasmonic materials

  • Nnear-field optics and plasmonics: Lab experiments

    Fabrication of plasmonic nanostructures

    Confocal microscopy: reflection and transmission modes

    SNOM in illumination/transmission mode

    Angle-resolved spectroscopy

    Light scattering and surface-plasmon resonance

    Surface enhanced Raman scattering

  • Near-field optics and plasmonics: lectures

    Dr. Manuel Rodrigues Gonçalves

    Institute of Experimental Physics

    Room N25/5212

    e-mail: [email protected]

    Tel.: 0731 50 23022

    Fax.: 0731 50 23036