[@NaukriEngineering] Apache Spark

download [@NaukriEngineering] Apache Spark

of 29

Embed Size (px)

Transcript of [@NaukriEngineering] Apache Spark

  • Apache Spark

    Riya Singhal

  • Agenda What is Big Data?

    What is the solution of Big data?

    How Apache Spark can help us?

    Apache Spark advantages over Hadoop MapReduce

  • What is Big Data? Lots of Data (Terabytes or Petabytes).

    Large and complex.

    Difficult to deal using Relational Databases.

    Challenges faced in - searching, storing, transfer, analysis, visualisation.

    Require Parallel processing on 100s of machines.

  • Hadoop MapReduce Allows distributed processing of large datasets across clusters.

    It is open source database management with scale out storage and distributed

    processing.

    Characteristics:

    Economical

    Scalable

    Reliable

    Flexible

  • MapReduce Map - Data is converted into tuples (key/value pair).

    Reduce - Takes input from map and combines input from map to form smaller set of

    tuples.

    Advantages Scale data Parallel Processing Fast Built in fault tolerant

  • MapReduce

  • Shortcomings of MapReduce1. Slow for Iterative Jobs.

    2. Slow for Interactive Ad-hoc queries.

    3. Operations - Forces task be of type Map and Reduce.

    4. Difficult to program - Even simple join operations also require extensive code.

    Lacks data sharing. Data sharing done through stable storage (HDFS) slow.

    Slow due to replication and Disk I/O but it is essential for fault tolerance.

    Can we use memory? How will it be fault tolerant?

  • Apache Spark Developed in 2009 by UC Berkeley.

    Processing engine.

    Used for speed, ease of use, and sophisticated analytics.

    It is based on Hadoop MapReduce but it extends MapReduce for performing

    more types of computations.

    Spark participated in Daytona Gray category, Spark sorted 100 TB of data (1

    trillion records) the same data three time faster using ten times fewer

    machines as compared to Hadoop.

  • Apache Spark Improves efficiency through

    In-memory data sharing.

    General computation graph.

    Improves usability through

    Rich APIs in Java, Scala, Python.

    Interactive Shell.

    HOW ??

    Upto 100x faster in memory and 10x faster on disk

    Upto 2-5x less code

  • Resilient Distributed Dataset (RDD) Fundamental Data Structure of Apache Spark.

    Read-only collection of objects partitioned across a set of machines.

    Perform In-memory Computation.

    Build on transformation operations like map, filter etc.

    Fault tolerant through lineage.

    Features: Immutable Parallel Cacheable Lazy Evaluated

  • Resilient Distributed Dataset (RDD)Two types of operation can be performed:

    Transformation Create new RDD from existing RDD. Creates DAG. Lazily evaluated. Increases efficiency by not returning large dataset. Eg. GroupByKey, ReduceByKey, filter.

    Action All queries are executed. Performs computation. Returns result to driver program. Eg. collect, count, take.

  • Ready for some programming..

    (using python)

  • Creating RDD# Creates a list of animal.animals = ['cat', 'dog', 'elephant', 'cat', 'mouse', cat]

    # Parallelize method is used to create RDD from list. Here animalRDD is created.#sc is Object of Spark Context.animalRDD = sc.parallelize(animals)

    # Since RDD is lazily evaluated, to print it we perform an action operation, i.e. collect() which is used to print the RDD.print animalRDD.collect()

    Output - ['cat', 'dog', 'elephant', 'cat', 'mouse', 'cat']

  • Creating RDD from file#The file words.txt has names of animals through which animalsRDD is made.

    animalsRDD = sc.textFile('/path/to/file/words.txt')

    #collect() is the action operation.

    print animalsRDD.collect()

  • Map operation on RDD To count the frequency of animals, we make (key/value) pair - (animal,1) for all the animals and then perform reduce operation which counts all the values.Lambda is used to write inline functions in python.mapRDD = animalRDD.map(lambda x:(x,1))

    print mapRDD.collect()

    Output - [('cat',1), ('dog',1), ('elephant',1), ('cat',1), ('mouse',1), ('cat',1)]

  • Reduce operation on RDD reduceByKey is used to perform reduce operation on same key. So in its arguments, we have defined a function to add the values for same key. Hence, we get the count of animals.reduceRDD = mapRDD.reduceByKey(lambda x,y:x+y)

    print reduceRDD.collect()

    Output - [('cat',3), ('dog',1), ('elephant',1), ('mouse',1)]

  • Filter operation on RDD Filter all the animals obtained from reducedRDD with count greater than 2. x is a tuple made of (animal, count), i.e. x[0]=animal name and x[1]=count of animal. Therefore we filter the reduceRDD based on x[1]>2.filterRDD = reduceRDD.filter(lambda x:x[1]>2)

    print filterRDD.collect()

    Output - [('cat',3)]

  • Please refer http://spark.apache.org/docs/latest/programming-guide.html for

    more about programming in Apache Spark.

    http://spark.apache.org/docs/latest/programming-guide.html

  • APACHE SPARK

    VS

    HADOOP MAPREDUCE

  • Spark vs. Hadoop Performance

    Spark better as it does in-memory computation. Hadoop is good for one pass ETL jobs and where data does not fit in memory.

    Ease of use Spark is easier to program and provides API in Java, Scala, R, Python. Spark has an interactive mode.

    Hadoop MapReduce is more difficult to program but many tools are available to make it easier.

    Cost Spark is cost effective according to benchmark, though staffing can be costly.

    Compatibility Compatibility to data types and data sources is the same for both.

  • Spark vs. Hadoop Data Processing

    Spark can perform real time processing and batch processing.

    Hadoop MapReduce is good for batch processing. Hadoop requires storm for real

    time processing, Giraph for graph processing, Mahout for machine learning.

    Fault tolerant Hadoop MapReduce is slightly more tolerant.

    Caching Spark can cache the input data.

  • Applications Companies that uses Hadoop and Spark are:

    Hadoop - Hadoop is used good for static operation. Dell, IBM, Cloudera, AWS and many more.

    Spark Real-time marketing campaign, online product recommendations etc.

    eBay, Amazon, Yahoo, Nokia and many more. Data mining 40x times faster than Hadoop (Conviva). Traffic Prediction via EM (Mobile Millennium). DNA Sequence Analysis (SNAP). Twitter Spam Classification (Monarch).

  • Apache Spark helping companies grow in their business

    Spark Helps Pinterest Identify Trends - Using Spark, Pinterest is able to

    identifyand react todeveloping trends as they happen.

    Netflix Leans on Spark for Personalization Aid - Netflix uses Spark to support

    real-time stream processing for online recommendations and data monitoring.

  • Libraries of Apache Spark Spark provides libraries to provide generality. We can combine these libraries seamlessly in the same application to provide more functionality.

    Libraries provided by Apache Spark are:

    1. Spark Streaming - It supports scalable and fault tolerant processing of streaming data.

    2. Spark SQL - It allows spark to work with structured data.3. Spark MLlib - It provides scalable machine learning library and has machine

    learning and statistical algorithms. 4. Spark GraphX - It is used to compute graphs over data.

    Refer http://spark.apache.org/docs/latest/ for more information.

    http://spark.apache.org/docs/latest/

  • THANK YOU