Naturgass til fremstilling av hydrogen - Naturgass-kjeden fra reservoar til bruker -

47

Click here to load reader

description

Naturgass til fremstilling av hydrogen - Naturgass-kjeden fra reservoar til bruker - THE PRODUCTION OF HYDROGEN FROM NATURAL GAS TPG4140 NATURGASS 11 Oktober 2010 10:15-11:00 & 11:15-12:00 NTNU Energi- og Prosessteknikk (EPT) Prof. Dr.-Ing. Ulrich Bünger [email protected]. Outline - PowerPoint PPT Presentation

Transcript of Naturgass til fremstilling av hydrogen - Naturgass-kjeden fra reservoar til bruker -

Page 1: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

1

Naturgass til fremstilling av hydrogen

- Naturgass-kjeden fra reservoar til bruker -

THE PRODUCTION OF HYDROGEN FROM NATURAL GAS

TPG4140 NATURGASS

11 Oktober 2010

10:15-11:00 & 11:15-12:00

NTNU Energi- og Prosessteknikk (EPT)

Prof. Dr.-Ing. Ulrich Bünger

[email protected]

Page 2: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

2

Outline

Lesson “One”

• Why hydrogen?

• Why hydrogen from natural gas?

• Hydrogen from natural gas

• NG to hydrogen process technology

Lesson “TWO”

• Hydrogen energy chains (= pathways)

• Emissions and costs in comparison to other pathways

• International strategies and projects

• Norwegian strategy

Page 3: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

3

Glossary

ATR auto-thermal reformer

CCS carbon capture and storage

CMG compressed methane gas

CNG compressed natural gas

CO carbon monoxide

CO2 carbon dioxide

DG-TREN Direction Generale Transport and Energy

DME di-methylester

EL electricity

EU European Union

FAME fatty acid methyl ester

FC fuel cell

FT Fischer Tropsch

GHG greenhouse gas (emissions)

GH2 gaseous hydrogen

HFP Hydrogen and Fuel Cell Technology Platform

H2 hydrogen

HT-FC high temperature fuel cell

ICE internal combustion engine

LH2 liquid hydrogen

NG natural gas

RME rape seed methyl ester

PE primary energy

PEMFC proton exchange membrane fuel cell

POX partial oxidation

PSA pressure swing adsorption

SMR steam methane reformer

TES Transport Energy Strategy

WGS water gas shift reactor

Page 4: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

4

Lesson “One”

Page 5: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

5

Early hydrogen vision

Source: GermanHy, 2008

HVDC power transport H2 – pipeline LH2 tanker routes

Canada

A global energydistribution system

Seasonal and daily distribution of renewable forms of energyand import to the industrial world (here: Germany)

Daily energyload levelling

Seasonal energyload levelling

N

S

W E

Source: Ludwig Bölkow, 1988

Page 6: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

6

Hydrogen‘s short term role – today‘s challenge

1930 1950 1970 1990 2010 2030 2050 2070 2090

5,000

10,000

15,000

20,000

Tota

l p

rim

ary

en

erg

y s

up

ply

in

[M

toe

]

5,000

10,000

15,000

20,000Legend

GeothermalHydroWindBiomassSolar collectorsSOTPVUraniumCoalGasOil

Geothermal

Hydropower

Wind power

Oil

SOT

Biomass

Solar collectors

2006 2030

PVGas

Coal

Uranium

WEO 2006

LBS

T,

AW

EO

200

6

Source: LBST, Alternative World Energy Outlook, 2006

Supplygap!

Page 7: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

7

Sankey diagram Scotland 2002 [TWh]

Transport heavily depends on oil.What can replace dwindling oil in transport?

Page 8: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

8

Replenish.raw mat.

Organicresiduals

(w(o wood)

Sun,hydro-/wind

power Wood

Fermen-tation

Fermen-tation

Elektrolys. Gasification

Reformer Reformer

renewable

Ethanol Biogas Hydrogen

Hydrogen/CO (HT-FC)

Fuel cell

HeatElectr.

Primaryenergy

Conversion

Secondary energy I

End-energy

Usable energy Heating/Processes

Power/light

Naturalgas Elec.-mix* Coal Min. oil

Gasificat.Reformer

Reformer Reformer Reformer

fossil

2CO2 from air/concentr.sources

Synthesis/electrolyis

Methanol Gasol.NG

Refinery

No primaryenergy carrier

also internalreforming

Alsonuclear energy

Secondary energy II

Why hydrogen from natural gas?

Refrig.

Cooling/Processes

*Also contains all forms of primary energy, such as nuclear energy

Large variety of sources and pathways!

Page 9: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

9

• In transition phase hydrogen from renewables is more expensive

• Specifically with fuel cells, hydrogen from NG has some GHG emission reduction potentials versus oil and coal

• NG infrastructure widely available in Europe

• In comparison to oil, NG supply in Europe has a longer term resource potential ( increased energy supply diversity)

• Today, hydrogen from NG is the least complex ( least expensive) pathway; steam-reforming of NG (SMR) is the best-known process but will become more costly over time

• SMR are scalable by size allowing potential transition to flexible onsite hydrogen production

• Carbon sequestration and storage (CCS) allows nearly CO2 free hydrogen production, if accepted publicallyand widely proven to be safe and economic

Why hydrogen from natural gas?

Page 10: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

10

EU Hydrogen Energy Roadmap HyWays* (2004 - 2008)Transition and long-term pathways

* HyWays – The European Hydrogen Energy Roadmap Project (2004-2008)

Prospect 2030with forwardlookingassumptions

• EU-wide analysis to understand regionally different approaches & options for H2 in transport

• Back- and forecasting with wide stakeholder involvement (industry, institutes, politics)

• Application of toolbox for technical, economic, emissions and policyimpact modelling

• No commercialization approach!

Page 11: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

11

Natural gas grid in Europe

Source: NaturalHy 2008

Page 12: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

12

Choice of most relevant hydrogen sources

Source: Daimler 2010

Page 13: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

13NG to hydrogen process technologyMajor processes for hydrogen production from NG - reforming

NGreforming

Synthesisgas

clean-up

Hydrogenpurification

• Steam reforming• Partial oxidation• Autothermal reforming• Plasma reforming

• CO conversion (CO-shift)

Feed gasclean-up

• Dust separation• De-sulphurisation

• Catalytic processes• Adsorption• Diaphragm processes• Purification by metal-hydrides• Proton-/ion conductors• Iron-redox filter (Iron sponge process)

Raw NG NG H2 + CO(e.g. <10ppm)

Synthesis gas(H2, CO, CO2, CH4)

Pure H2

Large NG reformerHaldor Topsoe

Off-gas tank

Cleaning bystaged adsorption

Reformer reactor

Burner

Page 14: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

14

NG to hydrogen process technology

molekJHHCOOHCH /2063 224

Steam Reforming of Natural Gas (SMR)

• Steam reforming reaction for NG:

• Endothermic (catalytic) process with heating (700 - 800°C)

Partial Oxidation of NG (POX)

• Partial oxidation reaction for NG:

• Exothermic (non-catalytic) process at 1,300°C and 9 MPa with pre-heated O2 to 700 - 800°C, lower H2 efficiency and high dynamics, O2 taken from air leads to N2 contents in product gas

molekJHHCOOCH /3622/1 224

Page 15: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

15

NG to hydrogen process technologyComparison of reforming processes for NG

700 - 800°C 850 - 1,000°C1,300°C

SMR ATRCombined SMR/POXPOX

65 - 70% (small)81% (large)

65% (PE = 100%)37%

(PE EL = 33%)69% (large)

Low(endothermic)

High(exothermic)

High(exothermic)

Efficiency

Dynamics

Operatingtemperature

Page 16: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

16

NGreforming

Synthesisgas

clean-up

Hydrogenpurification

• Steam reforming• Partial oxidation• Autothermal reforming• Plasma reforming

• CO conversion (CO-shift)

Feed gasclean-up

• Dust separation• De-sulphurisation

• Catalytic processes• Adsorption• Diaphragm processes• Purification by metal-hydrides• Proton-/ion conductors• Iron-redox filter (Iron sponge process)

Raw NG NG H2 + CO(e.g. <10ppm)

Synthesis gas(H2, CO, CO2, CH4)

Pure H2

NG to hydrogen process technologyMajor processes for hydrogen production from NG – gas clean-up

Page 17: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

17

• Conversion reaction to oxidise CO (CO-Shift):

• Exothermic process at 190 - 260°C independant from pressure

• Also dubbed water gas shift reaction (WGS)

molekJHHCOOHCO /41222

NG to hydrogen process technologySynthesis gas clean-up: CO – conversion

Page 18: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

18

NGreforming

Synthesisgas

clean-up

Hydrogenpurification

• Steam reforming• Partial oxidation• Autothermal reforming• Plasma reforming

• CO conversion (CO-shift)

Feed gasclean-up

• Dust separation• De-sulphurisation

• Catalytic processes• Adsorption• Diaphragm processes• Purification by metal-hydrides• Proton-/ion conductors• Iron-redox filter (Iron sponge process)

Raw NG NG H2 + CO(e.g. <10ppm)

Synthesis gas(H2, CO, CO2, CH4)

Pure H2

NG to hydrogen process technologyMajor processes for hydrogen production from NG - purification

Page 19: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

19

NG to hydrogen process technologyHydrogen purification: adsorption

Phigh

Plow

Scheme of 4-stage PSA process

Product hydrogen

Adsorberair

InstrumentControlUnit

Feed gas Flushing gas

Vent stack

I - AdsorptionII, V - Pressure balanceIII - Pressure relaxationIV - FlushVI - Pressure rise

Page 20: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

20

Low(e.g. 3 bar)

High(10 bar)

High(20 bar)

Catalyticprocesses

MembranetechnologyPSA

High(catalyst)

High(Pd/Ag membrane)

High(system complexity)

High LowHigh(exothermic)

Costs

Dynamics

Pressure

NG to hydrogen process technologyComparison of hydrogen purification processes

Page 21: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

21

Flowsheet of Carbotech SMR at ARGEMUC(100 Nm3

H2/hr)

Source: Bünger, Haukedal, 2003

AirNG to burner SMR

WGS

Heat

Heat(start-up N2)

Offgas~ 1.000°CPSA-offgas

De-sulph.

OsmosisH2O

H2O

PSA

~ 350°C

~ 250°C

H2to storagetank (~ 30 bar)

De-ion

Bypass

NG

~15 bar

Offgas buffer

H2 buffer

Synthesis gas

Page 22: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

22

• 35,000 Nm3/h hydrogen

• 9-bed PSA (99.9 vol% purity)

Source: Linde

Large NG steam reformer Leuna/Bitterfeld

Page 23: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

23

Aerial View of SMR(330 Nm³/h)

Source: Caloric

Hydrogen product tanks

Reformer reactor

Offgas buffer tank (2 MPa)

4-stage PSA

Page 24: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

24

Major Components of SMR

Off-gas containerAdsorber

Steam-drum

Steam-reformer

Cooler Burner

Air blower for burner

Page 25: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

25

On-site SMR (100 Nm3 H2/h) with CO-Shift and PSA

Source: Mahler IGS

Page 26: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

26Compact small scale SMR with integrated desulphurisation for residential PEM-fuel cells (0.5 - 1 kWel)

Source: Osaka Gas, 2004

Type FPS-1000 FPS-500

Class for net 1 kWel systems for net 500 Wel systems

CO removal process Preferential oxidation

Burner fuel Anode off gas + NG or NG only

CO in product gas < 1 ppm (initial), < 10 ppm (after 90,000 hours)

Thermal efficiency (LHV)*1 at nominal output 77% 75%

Life (without exchanging any catalysts) 90,000 hours (5 ppm-S in NG)

Size (including thermal insulation, without outer piping) 280Wx440Lx395H 260Wx370Lx395H

Start-up time ca. 1 hour

Turn down (net available H2 basis) 0% (self-sustainable) - 100%

Load change rate at increasing output > 1 W/sec*2

Load change rate at decreasing output Moment*2

Designed start-up and shut-down times 200 times

Pressure drop of fuel line < 5 kPa

Flow rate of natural gas*3 for process at nominal output 4.2 NL/min 2.1 NL/min

Steam/Carbon ratio at steam reformer 2.5

O2/CO Ratio at CO removal reactor 1.5

Flow rate of product gas at nominal output (dry) 23 NL/min 11.5 NL/min

H2 > 75 vol.%

N2 < 3 vol.%

CH4 < 2 vol.%

CO < 1 ppm

Product gas (dry %)

CO2 20 vol.%

*1 Thermal efficiency = Enthalpy of H2 consumed in cell stack / (Process natural gas + Burner natural gas) *2 depends on control procedure. *3 Composition of natural gas: CH4 = 88 vol.%, C2H6 = 6 vol.%, C3H8 = 3 vol.%, C4H10 = 3 vol.%

Page 27: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

27

Lesson “Two”

Page 28: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

28

Outline

Lesson “One”

• Why hydrogen?

• Why hydrogen from natural gas?

• Hydrogen from natural gas

• NG to hydrogen process technology

Lesson “TWO”

• Hydrogen energy chains (= pathways)

• Emissions and costs in comparison to other pathways

• International strategies and projects

• Norwegian strategy

Page 29: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

29

Density CO2

kg/l MJ/kg MJ/l g/MJ

Gasoline 0.745 43.2 32.2 73.38

Diesel 0.832 43.1 35.9 73.25

Naphtha 0.720 43.7 31.5 71.22

Ethanol 0.794 26.8 21.3 71.38

FAME (biodiesel) 0.890 36.8 32.8 76.23

FT diesel 0.780 44.0 34.3 70.80

Methanol 0.793 19.95 15.8 69.1

DME 0.670 28.4 19.0 67.36

CNG 0.000790 45.1 0.0356 56.24

Hydrogen 0.000090 120.0 0.0108 0.0

LHV

Fuel emissions and costs in comparisonEnergy specific physical properties

Sources: CONCAWE/EUCAR/JRC, WtW calculations by LBST

http://ies.jrc.cec.eu.int/wtw.html

Page 30: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

30

Typical hydrogen energy chainHydrogen from NG (EU-mix)

Natural gassupply

(EU-mix)

Reformer(on site)

H2 compression

Electricitysupply

(EU-mix)

Energy source

Energy source

Energy loss

Electricity

NG H2

Energy loss Energy loss

CGH2

Electricity Electricity

NOX CH4 CO2 NOX CH4 CO2

NOX CH4 CO2

Energy loss

Natural gassupply

(EU-mix)

Reformer(on site)

H2 compression

Electricitysupply

(EU-mix)

Energy source

Energy source

Energy loss

Electricity

NG H2

Energy loss Energy loss

CGH2

Electricity Electricity

NOX CH4 CO2 NOX CH4 CO2

NOX CH4 CO2

Energy loss

Page 31: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

31

Emissions and costs in comparisonGHG emissions for various hydrogen (and reference) energy chains

Source: GM-WtW Study, LBST, 2003

MTA: Manual Transmission AutomaticDI-ICE: Direct injection ICE

Fuel production governs GHG emissions

End-use efficiency has a large impact on WtW efficiency!

Page 32: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

32

Manufacturer Haldor Topsoe 1998 Linde 1992 Units

Capacity 560 100.000 Nm3H2/h

NG input 1,4406 1,4167 kWh/kWhH2

LHV (NG) 10 10 kWh/Nm3

LHV (H2) 3 3 kWh/Nm3

LHV (H2) 33,33 33,33 kWh/kg

NG input 0,43 0,43 Nm3NG/(Nm3

H2)

Electricity input 0,0161 -0,05 kWh/kWhH2

Investment 2.172.990 77.716.366 EUR

Specific investment 3.880 777 EUR/Nm3/hEquivalent full load periods 8.000 8.000 h/a

Annual H2 production 403 72.007 tH2/a

Discount rate 8% 8%Economic lifetime 15 15 aCapital costs 253.869 9.079.568 EUR/a

NG costs 0,030 0,015 EUR/kWhElectricity costs 0,065 0,050 EUR/kWhAnnual NG costs 580.850 51.000.000 EUR/aAnnual electricity costs 14.065 -6.000.000 EUR/a

Maintenance 21.730 2.331.491 EUR/aNumber of operators 0 10Labour costs 0 50.000 EUR/a/operatorLabour 0 500000 EURaO&M total 21.730 2.881.501 EUR/aH2 costs 0,065 0,024 EUR/kWh

H2 costs 0,194 0,071 EUR/Nm3H2

Hydrogen production costs from SMRfor on-site and large plant [€/Nm³H2]

Source: LBST

Page 33: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

33

Specific investment costs of SMRsas function of capacity [Nm³H2/hr]

Source: HyWays, 2006

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1 10 100 1.000 10.000 100.000 1.000.000

Capacity [Nm3/h]

Sp

ecif

ic in

vest

men

t [€

/(N

m3 /h

)]

SMR

Bio gasif

Electr.

Coal gasif

with CCS

in-situ gasificationwith CCS

with CCS

without CCS

large electrolysis unit &

HP electrolysis

HyGear (500 Nm³/h):~3,000 €/(Nm³/h)

onsite SMR

central SMR

Investment scales strongly with plant size!

Page 34: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

34

Hydrogen production costsInternational data compilation [€/kg]

Source: NextHyLights, 2010

Page 35: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

35

Evolution and selected milestones of EU‘s H2/FC-strategy

2002 200520042003 2006 2007

Vision Report: “Hydrogen energy and Fuel Cells – A vision of our future”June 2003

Hig

h Le

vel G

roup

H2

and

FC

(200

2-20

03)

EU Hydrogen&Fuel Cell Technology Platform founded January 2004 with participation of major stakeholders

Two key documents“Strategic Research Agenda” and “Deployment Strategy”Endorsed at HFP General Assembly March 2005

Strategic combination of both reportsJune/October 2005

“Operations Review Days”December 2005

HFP General AssemblyImplementation Plan endorsedOctober 2006

HyWays EU-H2-RoadmapJoint TechnologyInitiative kicked off

Page 36: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

36

Hydrogen production mix GermanyGermanHy - German Hydrogen Energy Roadmap

The future mix of energies for H2 production will depend on political targets and support, as well as technological achievements

Hydrogen to be produced from different primary energy sources depending on scenario and respective share of individual sources

political imperative: share of renewable energies

at least 50%

Shares of primary energy carriers in hydrogen production

100 PJ

480 PJ

100 PJ

470 PJ

90 PJ

440 PJ

‘Moderate’

‘Climate’

‘Resources’

Page 37: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

37

Hydrogen admixture to natural gas gridNaturalHy – European stakeholder study

Source: M.-B. Hägg, D. Grainger, J. A. Lie;Dept. of Chem. Eng., NTNU; NaturalHy, 2004

(e.g into storage cavern)

Page 38: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

38

Source: Onno Florisson, Gasunie, NaturalHy, 2007

• H2 does not separate from a layer of H2/NG in a confined room

• H2 has a significant impact on the laminar and turbulent flame velocity

• Mixtures up to 50% H2 in NG are not critical for the crack propagation in X52 steel pipes

• The permeability of H2 through PE pipes is about 8x the permeability of NG

Some results highlighted

Hydrogen admixture to natural gas gridNaturalHy – European stakeholder study

Admixture is option for „greening“ NG in public grids.

BUT:

H2-NG mixtures do not provide fuel for fuel cells.

Page 39: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

39

Automotive manufacturers‘ FCEV strategies

2010 20202015

Daimler

Fiat

PSA

Nissan Renault

Volkswagen

Ford

GM

Toyota

Honda

Hyundai Kia

SAIC

64A-class

2011 2012 2013 2014 2016 2017 2018 2019 2021

200 B-class

2009

1,000 B-class 10,000 p.a. B-class100,000 p.a.

C-class

20H2CNG Panda

> 20Panda

< 10FCVs

20 X-Trail FCV

35

30 FCVs

110 Equinox 10,000 FCVs 100,000 FCVs 250,000 FCVs

>100 FCHV-adv FCV Sedan

200 FCX Clarity 1,000

> 100 1,000 10,000 30,000 100,000

6Rowe 750

190Rowe 750

Riversimple 30 5,000

307 CC FiSyPAC

Source: GM, LBST compilation

Page 40: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

40

Key data of fuel cells for transport

Source: Daimler, 2010

Massive technical learning!

Remaining challenges: FC system costs and H2-infrastructure

Page 41: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

41

Japan – Hydrogen and Fuel Cells Strategy

Source: Ishitani 2010

Page 42: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

42

Japan - H2- fueling stations in field test

Source: Monde 2010

Page 43: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

43

500 km major trunk roads

15 Quantum ToyotaH2 hybrid

1st fuelling station at Grenland

HyNor – (Extendable) Norwegian H2 Corridor

15 Mazda RX8H2 Wankel

Stavanger fuelling station

5 Th!nk (FCrange extender)

2 Alfa RomeoMiTo FC

10 DaimlerB-classF-CELL

5 vanHoolFC buses

2 70 MPa and 1 35 MPafuelling stations in Oslo

Økern, West Oslo, Lillestrøm

New EU Lighthouse cluster Oslo

Page 44: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

44

Possible hydrogen production mix NorwayNorWays – Norwegian Hydrogen Energy Roadmap project

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2010 2015 2020 2025 2030 2035 2040 2045 2050

t H

ydro

gen

/a Biomass gasification

Byproduct hydrogen

NG-SMR

Electrolysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2015 2020 2025 2030 2035 2040 2045 2050

%

>2020, central NG SMR (without carbon capture) and onsite electrolysis >2035, more electrolysis (sparsely populated areas deployed; increasing NG prices) By-product hydrogen, biomass gasification and SMR with CCS

do not appear economic under current assumptions.

Page 45: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

45

Hydrogen as future export opportunityNorWays – Norwegian Hydrogen Energy Roadmap project

LH2LH2

GTGT

SMRSMR

Chain 4b

Chain 4a

Chain 3b

Chain 3a

Chain 2b

Chain 2a

LNGLNG

LH2LH2

H2H2

SMRSMR

NGNG

H2H2

Chain 1a

Chain 1b

GH2

GH2

SMRSMR

LH2

LH2

GTGT

SMRSMR

650 km

650 km

580 km

650 km

50 km

2400 km

2400 km

2400 km

1800 km HVDC land 580 km sea

100 km

North

South

HydrogenElectricityNatural gas

Export of hydrogen from NG seems inferior to direct NG export (given the feasibility of CO2 storage at the destination)

Export of hydrogen from renewable energy from Norway to central Europe seems advantageous against HVDC in the future!

Source: NorWays 2008

Page 46: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

46

H2 cars and fuelling stations worldwide

www.h2mobility.org

Source: LBST

www.h2stations.org

290 entries worldwide29 operated on NG ((de-)central+trucked LH2)147 in operation (out of which 16+ public)23 decommissioned, 7 under construction95 planned, or plans given up (e.g. Mexico)

Page 47: Naturgass til fremstilling av hydrogen  - Naturgass-kjeden fra reservoar til bruker -

47

Weindorf, Bünger: Verfahren zur Reinigung von Wasserstoff für den Einsatz in kleinen Brennstoffzellen (in German), 1996.

Scholz: Verfahren zur großtechn. Erzeugung von Wasserstoff und ihre Umwelt-problematik. Berichte aus Technik & Wissenschaft 67/1992, Linde, pp. 13-21.

Ullmann’s Encyclopedia of Industrial Chemistry, Vol. B3, unit operations II, VCH, 1988, pp. 9-1 - 0-52.

Meyer Steinberg: Modern and prospective technologies for hydrogen production from fossil fuels, Int. J. Hydrogen Energy, Vol. 14, No. 11, pp. 797-820, 1989.

European High Level Group on Hydrogen&Fuel Cells: Hydrogen Energy and Fuel Cells – A Vision of Our Future, http://europa.eu.int/comm/research/rtdinfo_en.html, 2003.

The Hydrogen Economy – Opportunities and Challenges, Editors M. Ball, M. Wietschel, Cambridge University Press, 2009, ISBN 978-0-521-88216-3.

Selected Literature