NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS...

76
N9T-~f9R P USL I CAT tOtr-ei^^fOiT^ffH^-g- NATIONAL BUREAU OF STANDARDS REPORT 10 388 ELASTIC STABILITY AND DEFLECTIONS OF ECCENTRICALLY-LOADED COMPRESSION MEMBERS MADE OF MATERIAL WITH NO TENSILE STRENGTH U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

Transcript of NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS...

Page 1: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

N9T-~f9R P USL ICAT tOtr-ei^^fOiT^ffH^-g-

NATIONAL BUREAU OF STANDARDS REPORT

10 388

ELASTIC STABILITY AND DEFLECTIONS

OF ECCENTRICALLY-LOADED COMPRESSION

MEMBERS MADE OF MATERIAL WITH

NO TENSILE STRENGTH

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

Page 2: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ' was established by an act of Congress March 3, 1901. Today,

in addition to serving as the Nation’s central measurement laboratory, the Bureau is a principal

focal point in the Federal Government for assuring maximum application of the physical and

engineering sciences to the advancement of technology in industry and commerce. To this end

the Bureau conducts research and provides central national services in four broad program

areas. These are: (1) basic measurements and standards, (2) materials measurements and

standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the

Institute for Applied Technology, the Center for Radiation Research, the Center for Computer

Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United

States of a complete and consistent system of physical measurement; coordinates that system with

measurement systems of other nations; and furnishes essential services leading to accurate and

uniform physical measurements throughout the Nation’s scientific community, industry, and com-

merce. The Institute consists of an Office of Measurement Services and the following technical

divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molec-

ular Physics—Radio Physics -—Radio Engineering -—Time and Frequency -—Astro-

physics -—Cryogenics.-

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to im-

proved methods of measurement standards, and data on the properties of well-characterized

materials needed by industry, commerce, educational institutions, and Government; develops,

produces, and distributes standard reference materials; relates the physical and chemical prop-

erties of materials to their behavior and their interaction with their environments; and provides

advisory and research services to other Government agencies. The Institute consists of an Office

of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote

the use of available technology and to facilitate technological innovation in industry and Gov-

ernment; cooperates with public and private organizations in the development of technological

standards, and test methodologies; and provides advisory and research services for Federal, state,

and local government agencies. The Institute consists of the following technical divisions and

offices:

Engineering Standards—Weights and Measures— Invention and Innovation— Vehicle

Systems Research—Product Evaluation—Building Research—Instrument Shops—Meas-

urement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and ap-

plication of radiation to the solution of Bureau mission problems and the problems of other agen-

cies and institutions. The Center consists of the following divisions:

Reactor Radiation—Linac Radiation—Nuclear Radiation—Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and

provides technical services designed to aid Government agencies in the selection, acquisition,

and effective use of automatic data processing equipment; and serves as the principal focus

for the development of Federal standards for automatic data processing equipment, techniques,

and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information— Computer Services— Sys-

tems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and

accessibility of scientific information generated within NBS and other agencies of the Federal

government; promotes the development of the National Standard Reference Data System and a

system of information analysis centers dealing with the broader aspects of the National Measure-

ment System, and provides appropriate services to ensure that the NBS staff has optimum ac-

cessibility to the scientific information of the world. The Office consists of the following

organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical

Information '—Office of Technical Information and Publications—Library—Office of

Public Information—Office of International Relations.

’ Headquarters and Laboratories at Gaithersburg. Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

- Located at Boulder, Colorado 80302.

^ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

Page 3: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

4212111 November 23, 1970

NBS REPORT

10 388

ELASTIC STABILITY AND DEFLECTIONS

OF ECCENTRICALLY-LOADED COMPRESSION

MEMBERS MADE OF MATERIAL WITH

NO TENSILE STRENGTH

By

F el ix Y. Yokel

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARfor use within the Government. Before

and review. For this reason, the public,

whole or in part, is not authorized un

Bureau of Standards, Washington, D.C.

the Report has been specifically prepare

Approved for public release by the

director of the National Institute of

Standards and Technology (NIST)

on October 9, 2015

jnting documents intended

°d to additional evaluation

of this Report, either in

of the Director, National

ivernment agency for which

r its own use.

<NBS>

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

Page 4: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

- ^

I

' V •r'^'*f

~A ^

"' '^n^pPH

'

.lA;i

— ^.

•• V v'. ^' -.• > 'r-^l^^l • ., Vt

*

&.,' >•

'.S

:_>' •"

I

•; .

^

r/•

,M rjf-'- '.

« 1

*> , Ii

S’Hk '•i;4''B vft'. ..“ r

'^yen ' ''

*'•• _'f'-i. h'v '’.

. i *

.rn-: ,*' ryV'...'I

-

m*'^. ', ,t "V'’'*4 f _.T»'-'^»(d

;;,.

‘A’.-:-

y 'i-

'vv ;-'>'*v‘iti' 't« W% -% ^

L'-;..

W:•M

CT— — ^ —

I r )

fc*3i rwx^iq to ^nw/an'V^ iftliutiu ft* iJIRO'iJS Id V

!

l!3L^<lua » ti ni iiii>q>ti ?rtt %'

f/\e'

-< •

|(in0t*4 ttwttiiiN'i>H<t w. .«f.«fckl'OWtrt .“jotlfnlilt^t ,r.rt1^ij» * Mlii^p.-'

[;tj»uC f4f fRtji^ foiiliyr t>«ft4»?da li % **''''’^

#mt^ ,i'»v».»vi>l ,b-|K>or la^i ^rttAOB buicuiibbi* «3\, '•eoqvPrOt ist/t-tw if»H* ^ • :r^.J •'

“r if ^f!»|

^ *

•rf'- - ^ ^ •It* ii

:"** i,-- • S':

-i-' '*' ' * '•

' CT i J3f7

D*

Page 5: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

TABLE OF CONTENTS

Page

ABSTRACT ‘ il

1. INTRODUCTION AND SCOPE 1

2. ASSUMED MATERIAL PROPERTIES AND MEMBER GEOMETRY 1

3. LOADING CONDITION 2

4. EQUILIBRIUM 2

5. THE DIFFERENTIAL EQUATION FOR THE DEFLECTION CURVE 5

6. SOLUTION OF THE DIFFERENTIAL EQUATION FOR THEDEFLECTION CURVE 8

7. APPLICATION OF THE SOLUTION TO DERIVE CRITICALLOAD, MAXIMUM DEFLECTION AND MAXIMUM STRESS 10

8. SUMMARY OF THEORETICAL ANALYSIS 12

9. APPLICATION OF THE THEORY TO PREDICT THE RESULTSOF FULL-SCALE TESTS ON MASONRY WALLS 13

APPENDIX I - NOTATION 20

APPENDIX II - DERIVATION OF SOLUTION 22

APPENDIX III - REFERENCES 25

FIGURES

Page 6: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

t’' ^ *

. /'

{', v:H\ :'^'i

,

'':H'* ‘ ' *;% • ' • • 5|?> TaASfrgffAi^

'>\r ^ t ’:^‘nm^ • „ . <:-'#f . i- . ;. ^. P^tlTSa'IO/'’) .iAiSSTAM OaMi^ar^ - J

’A' 'A * «^' '" ’’ /

‘’ A ', .' i*;\.,

’ *'J*-,: .'i'/j- '^»iVA;6i. s-.sA-:' ;/

|yv#^^•CM sC.^.V-'...;V. • 4 » '<1

#": * :>

'''rtW’‘-'’“

. :it, ,*, , . > ,

• •>/•’••'"•I'''.

• * »rai.«ftilii;^ -As.s^t'y,. '

'

' '• iv’’

'

^‘

e; ., . ..'

» 3p'rt

-•^i , ,. Twm •

-

4'> '• »' '' » *'* f ' > t/

. V/

w^aV* ''^-‘-i.

•jA'’

-.i'"

'' JU, C.•'

. ., . *...

. - V r ; r . > , . . 3V^0 WrrD3J^a<

ji4W3[fl3, hojt'ast .m^^v:4:- : msmixam' .(lAal ii 'S '[

^ ^: ; K '®ia» .

, . . MSj’aAMA vtAailfcwaHT .^0 SXAJfl'jj

^

'

'

'

'

''

f-WJZ%1S ^}!it or Vi»0V«T W VO• i-i'* '«•'• :s3r.fM^pa:(mn m er.?3T ‘sjasssjju--?

i-w€^7!'- ..'

,

': ilESfeK »? :

, :;|- ^;,

;• > « • * * • -f-*aoSKi* 'f' ‘-'t •, «®ISAat>K B I '

;ijlai/^^

,''

•I ® '

VO aoiTAViaao -* Xi ..xicw^s^aA

Page 7: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Elastic Stability and Deflections of Eccentrically -

Loaded Compression Members Made of Material With NoTensile Strength

by

Felix Y. Yokel

A mathematical solution is derived, which permits the

computation of critical load, deflection and stresses foreccentrically loaded slender prismatic compression members,made of materials that develop compressive strength but haveno tensile strength. A graphical presentation of the solu-tion facilitates its application. In an example of applica-tion, the solution is used to compute the strength of masonrywalls which were tested by the Structural Clay ProductsInstitute. There is good agreement between computed and mea-sured strength.

Key Words: Buckling , compression members, deflection ,

equilibrium, load eccentricity, masonry ,

stability , section cracking, stress distribution,unreinforced concrete.

ii

Page 8: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

0I1

oH d-Si’'*' rf.i*2ii/&M !{o a'Tijdwi^M ^«br,oJ

'vr 'v\

ry •

'

,,r

Vd

Ii»

'

''*4«-iC“!^.v

• ^. rV^'# • J i -\M 1

iapko^C ,5t ;3riisU¥

‘i

'.•>

V.

./f

.€

.-V

sr^> »i3Tifl09q d*.>fK»jr,ht:'.>ai::fafe ^ fifn <v ?;*

^ tf ^ i'-^aas T^t; nolfi^aJils-b . , t-sof r/>i^

cvt ;ic i ^nrjmci 'jfj Ui»l>a<;^ vi lab i Ho^rka^'.

JA.J q^t^vri'fa iiwfj eieiTfijBin aba*^^

-i>for^ iid,; ie nr4U€^)Q'^c.»lq A diiansl oft^

^j,Il'/cfM ‘to ^ !M0>:b /tX rnsjaali iDsl ootJ' /

vif? /Cifti,. 'to ofl’:^ on no.l4:&t^a »iii 4frot4ij

Vv fO y^d haiaan rlofjtd aXXi&V^

t?a.9 fanunmo:^ aif&^nB<f SM>aa ^-i^T

>*i

k^ltPfesTfqttoj) icb^o^: x^, \-yJ 4-^xxj^Q 5:?& baoX ^tjutitdli Jhiipo

^.4X3 y srrf^^6r^5. n^ihr^i^a

.aitAionoj hp’too^frlajiw

Page 9: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

1. Introduction and Scope

In this paper solutions are derived for the computation

of elastic deflections and stability of compression members

made of materials with compressive strength and no tensile

strength and with a linear relationship between compressive

stresses and strains. Computed values could be considered

upper limits for deflections and lower limits for critical

load of solid prismatic walls made of masonry or unrein-

forced concrete, since these materials have properties simi-

lar to those assumed in the paper. In Appendix III the solu-

tions are used to predict the results of 39 full-scale tests

on brick walls which were conducted by the Structural Clay

Products Institute [ 2 ]

,

and the correlation between test

results and theory is discussed.

2. Assumed Material Properties and Member Geometry

The material is assumed to be elastic, to have a linear

relationship between stress and strain in compression and to

have no tensile strength. The problem is analyzed for a

prismatic member with a solid rectangular cross section with

dimensions as shown in Figure 1.

_i/Numbers in brackets refer toin Appendix m.

literature references listed

Page 10: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

•^**_ n

1%‘

^!('

I' •^. j.-^v.’f 'I,. I •, ^*,1

s' ,

''

^ir.

ljei;3s\ty<5ao'::: loi b^vitsh ^t6 lE^oiluIo^ lyqf^o Exrtl trl ijJ

;Rf>^a;e8t4m'ati>:^f). 'fill irfirj« IrtCfl" J sa fisb ai Jz^ra-, .i'o'%

,7; V:' ..- jPMpg iMHi a \. :f“'"'i.'r *S , ,

''

‘aii'iataj on bn*i tfetj^noi^a^ svi^i-ftiamoo tjbiv alel'isjlBm io IbW^

a-o '• ^

p.i>ic^\n:f fra^wS0d:iq4i!pro ^ ^ tiliw bm tU^noisz

^ ie^oS) _^4*biufoJ ahvrl i>v'

_ 0© buB '. ‘'•V.v

I,b:> i .ti

X

^

! 1nb " 2 .1 im i t ^oqqo^W

'

^Vlk

‘*rri

*fiie-*T<i13*^ rj *T i'

^

~ 'nma ,»T^-

ij to '^7«o)SB« lo &bnfli fcliftw 3i jfiozitrfrbiloe I 0 fahoX'• ' • « ax-.-i-*.

h IJ

-imie aGi^^ftqo'rVj sVBfl 5j

I

r>i nsijBfii Gfidda o/txe t9Jst3fio:> bsGtqClm'^ '

'&•> 't' M '

tuloe qrix lir xfba^qcjA nl ./fdqiq tirij nx bqiruie osort^^ oJ'..i .

I 0 ,HXXtf25i ^|(ii:t . od baau ’ bib‘ T . : .

'" 'MSm . ..J3 „» v^“

YB-13 -viiiX- bBl-r>:i/l2

'' d •

nG>wi ^d rso ItBlOTfOD Grf/ b

3 iiGxrfw elifiw 'X kr^ ^ Ti->-

K*/

f£]ajoJcj8nI » Jauboi'i'W%^^;IBSS5!S££SP^ '"‘S-W.be^Moeib ex Ytpqrix.brTB exiuea^f

B av:.^ od bQstuaajs ex IfiXTaixifly adtir,>---. .O' «

ot i nr, iivt:f^-;iiqmo:t s;j nrn-^jjg bxiB zaatJe n»a’-xtad,?&£x(anol

> ' svVHBB ‘

1}Tm t,»osvIsnc ai maXdotq e<iT;^B. rfjsjnsije olianeji on ovajl'

M. .

".1 ;

':J,:.-' .

”'

"Bit.

dliSwSdi- <eot> T»ltf^p:BSat^ hXioi

I

'' .^ii|HS .:. i' or^i^ p.fioxin^/iuby

Jet»- -

^onsioye-i 97oiaT^j-ii oi »i a J a;X;?oi 5f- }ji gi admi'fl

mifl

Page 11: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

3. Loading Conditions

Loading conditions are shown in Fig. 2. The compres-

sive force P is a lineload which is evenly distributed

along the width b of the member. The force is applied at

an eccentricity equal to or greater than the kern- eccentric! ty

(e ^ t/6) . The line of action of force P is parallel to

the axis of the undeflected member and the force is applied

through hinges at both ends of the member. Thus the ends

of the member are not restrained from rotation. The member

is also not restrained from shortening in the direction of

the compressive force.

4. Equilibrium

4.1 Equilibrium at a Cross Section

Equilibrium at any cross section requires that the

resultant reaction force be equal to and collinear with the

applied force P. The corresponding stress distribution

over a cross section is illustrated in Fig. 3 for two cases.

Figure 3(a) illustrates the case where P acts at an

eccentricity equal to kern eccentricity (e = t/6) . Figure

3(b) illustrates the case where e > t/6.

In the case illustrated in Figure 3(a) the compressive

2 /stress (a) at one face (the tension face)— of the cross sec-

tion is zero. At the other (compression) face, the maximum

— ^ ^ .

—The term "tension face" is used here to identify theface that is subjected to zero stress and developstension cracks, even though no tensile stress can existin the member.

2

Page 12: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

fv

- 20 T^qmo:> <^r(T ^!

0n 1 a 9T fi s A<o t ^ I f> a-oo n iBb o

J

.. >i '>-, »•» Wfc'ir' " ^

'' vi

*«>«'

«

«' 1 OD-iOl ,3vxa-

J'

.*

r

' fit'• ^ '*

-Tri

s/Tt’ Tt> ot iBtipg Viroi*fJn 9,;>oV^ ftc

biyg on:r Ito ^ix4 arlV

eono 9ti^ zti gT _. >T3.^ lo'^gbwa- /Ijo'J t« eoanid rigooirfiiilL,'V

,T >'1i(t^!i!* srtT tr*i ami Jon a'ti; ralmsm aflx :f6.

'"'a .. >'. .,. "i

->*'

-• lA' '' “ ivTO no Jo ^1 JM rt f iintnoJTOrfe wotI fe'anj&T je»T .joft ozlajali^

'.i.

'

1'.,

. *t 0V 1 e 2 SI qm0:hio r( t

I

n '/'

s>wo,i tdi J fupU V .

nttisJa38gj«;%bf& b Jo mri tdl t f upd \ I . ^."

...j, !.,

« ,-

t>!|T j«4rJ p-a rfiipoT isdijoaa aaoio xm tn luuiifUrlao'd i>\.( :

. M

V; :

' ^rto t/amtao jiitl' „ .<} oarol feaf

'

'I'

si,' '"^ '

. orti #'-.I X >lrs •' - .

-.‘*'1^,':t€

^*'

es?>0t> c ,^rq nx ti no^Ji&9 «edto fiT rs/ol

giX 3^ .(d\t * '$) '.(l i';j 1 1 -r nrsdl>0' • -fnr*4 ni Jfliti,|)d .ytidi^XilOsK'V '

'

'':x. j !»//'. .jiki'.TTxc ^ j^dmmiaaimjmmm^- ' ui .:

ESr*st“T»

.< h S€i3‘:/ ^47 ’, s.dXfrTr^ali r._t

-

ijr

,»ilr (sjr siuaiX .!t boJKTjpuiX,! oaSo orij nl

tjffT 9 fit) 90 fid *irt (dj e

" J #«f1

5

jpfefi » fltv‘q ohb3; _ ,^|*'dsd 1 / . 0 K42

. Hd

HStJ Us?.u 2 x^'rs;>j3 l xtoi.‘-n;rX’'' i

ctSi bs1-^*'i{;4i.a i»:j u

3d’.-

ti''

^Ris :7 0.^

dX v>:>B't.’J

nofaiT-O'xr.. isri^i>gi, -WiX ’Xr£i.'

Page 13: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

compressive stress (a ) occurs:o

2P''o

“ Ft •

In Figure 3(b) a tensile crack appears at the tension

side of the cross section, since the material has no tensile

strength. The uncracked part of the cross section has a

triangular stress distribution similar to that shown in

Figure 3(a), where a = 0 at the origin of the crack.

The maximum stress at the compression face of the cross

section is:

a = ^ (eq. 1)3bu

where u is the distance between the action line of force P

and the compression face of the cross section.

The uncracked depth of the section in figure 3(b) is

3u, and the depth of the crack is t-3u. The expression in

eq. 1 is valid for all cases where e ^ t/6. This includes

the case in figure 3(a), where u = t/3

,

and:

_ 2P _ 2P

°o 3Fu Ft•

3

Page 14: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

•.fr* r'. '

i* ‘ ^

9:,‘

&

»., r* "H <ST..

niTiT

4 ?ift^

fc- ’ g

5b.. ^^^j?^l|(;fR- 4':i&ia, b 1 , 0) C dtuafH 'al/\5 ' '

M '**Oi. 1 I

. on ^sd. U?‘!ie5fs«f !|ii:r oH5

0 ^ed n^i>'*':>oe iw!5 ip‘, 5XJBr<i o?» ^ 'ii*7:>nu ^rlT .ifignUT^.e

’ #-

rvi aJ g»0T5? Tf.

£

s ..

*

r:

i^ »’#

• *4li 5e * R Bt^dw . sTiraiS'.^ V-

,

g ?.'? nil5 jt^ J i inu^X>:*»Ri 9iiTj

ucihuoe%

'

«. m

f I .'>*>}v*^

.'.i4F

'

.- ' /^

^ .

..i J '>

% <;vr^*5 J ;/ii» 'T.'3'f .fDa ^>dt rie^>W3^d 'O^^iiC^^xb :^d5 i/ oTsdw.1

^. r*c i?ir.:5^-4 ^ ‘i>df 'baB^'

.

C^K 11^^15 fl.Hj Id l?5

*

1»(0£Tdno ^,tir ifl r

s ''-«.

''i:.

,*. 11/ Xvcj4 ra»t,f.‘.9. o£i^ zs i'^r:} diasi? sift

:l>i?x; , 5\3 ^ • i .-. ^ ^ a^ccli oeeb. .••: ••. V,::

b.;i)E»v iji ['\pe^

>;

J'^K

• 5 .

Page 15: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

4.2 Equilibrium of the Structural Member

The stress distribution within the structural member,

when force P is applied at an eccentricity e ^ t/6, is

illustrated in Fig. 4. The rectangle outlined by broken

lines shows the undeflected shape of the member. The

deflected shape is shown by the heavy outline. The shaded

area within the deflected member shows the uncracked zone

which supports the load. The stress distribution at one

particular cross section is shown by the heavily -shaded

triangle

.

The distance between the compression face of the mem-

ber and the line of action of force P, u, varies along the

height of the member, because of member deflection. The

maximum distance, u^ , occurs at the two member ends. The

minimum distance, u , occurs at midheight. The line ofo

action of force P, which is shown in the figure by a dashed

line, passes through the edge of the middle third of the

compression zone. Since the stress at the compression face

of each section, a , is inversely proportional to u, theo

maximum compressive stress in the member, a occurs at^ max

midheight

:

2P^max 3bu

o

(eq. 2)

4

Page 16: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

D

i j t«7 l;; : u f ?8 «i't lo flfjjlttJiXiuni iT*'-T'

^

ljRSw*‘-i.fis »i(3r slSii'n naliv'H'iiAlb essua adl

m>h

i ,^\ j ^ > *} :3kyl^^:;» ffM- j£ #/ anroi rvii^i •’

• 5 -'-Sin'5-^07fi yd ni

.’j

. i© ornKa’ Sdd^ jo sds • a *

', '. » ^ ^ ^' It t

h-H?/::'.'' r'fT . kSfT ,lga^fC‘ art? uejD'^tuob ’:

;

V - i

~

»di nrrt.Ti%-*?9 Tft

:rct jt^'f tu^\ 9fli tJXoqqt/^

Vi'' '•'

'"* '" *

‘ ^

,. , r-

'•>' ' '-^3!

^'j '^z: r.i oM c:ewj/$fi ^.tMusJaib w^r/^j

t*rU

v

,'l Vo aoi?3« »rril er^*? bnr. 7frd,j. -.

te iT .ffMJ' Yo ©>dci>e*f> ^totf«»t©cr

V’’ " «»f

‘ ,^MJ V ,’>*_»*, fi 3 (»j4^|i iHi^ ^ fti , s^3itb3 aJLb flfn

t

't6 3frjt 4 -/.ii'I.i ,*>z^asTitb

^4

haztarb a. y<t -,ir':? cl »i Hj!Vv “>3io3t lo a lfoa:y>’*

-\. .._

4 od .k • iX ia e/iJ ««o!T aax -o iCimoo

I®5^\>1 '^ ,;.0 P 3 fl; 5lArrJi'C»|C , cJ«**jfvVUi ai , ? ,IlQti 33^©.#^ ,

^'U!33’0,

C,

t«^."f^'t*J.M ‘>H!X nl /i>©‘l3/n33 :'-•(! XT'6 (5^. 01

Page 17: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

5 . The Differential Equation for the Deflection Curve

Figure 5 shows the deflection curve of the compression

face of the member, together with the coordinate system used.

Since the member is symmetrically loaded the origin was

assumed at midheight. The x axis is parallel to the action

line of P, and is tangential to the deflection curve at the

origin. At each point, u = u + y, and, at x = h/2,o

u = u + y = u. .

o 1

Figure 6 shows a small element of the deflected member

between the compression face and the boundary of the uncracked

zone, where a = 0 at all times. The element itself is shown

by the solid outline. The average depth of the element is

3u. The initial undeflected length is d£.

The curvature of the compression face is caused by the

shortening of the face under compressive stress relative to

the boundary of the uncracked zone, which does not change in

length since a ~ 0 on the boundary.

As dJl-^0, the following expression can be written for

4), the change in the slope of the deflection curve over the

length of the element:

. e d)l

where e is the average strain over length d£,.

5

Page 18: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

: noi# Ut:}rT&i^l%tQ srfT ^ .£

-.^.-' 4!

TIE) i>viuo ite.iSy*ifl'l&b BdT Hr^od^-Z oTugiH *

M ^ •

bs*L tr^,yzyp. ^^n/iib7ty0O r iK.tfW 7G^tz^i^c^^ . i9d(c^r^ 9sif Ito asalt

..,^

( :

nisi 10 b*^t»iiof t* ei i^dascn adj aaitiS

. -^ii

^jH 9fi^ ot Jaitt?t ;>*7 zk bIaA x -^HT . Jriglfifrfbfti ' AdfrtxsBBB-S'.* ''’.-*>? ^

ifi ovTji’? t?4^ o^ ijt A 7 xr

-

>fti\ t ;;i bflii Id anilr

^ ' ^ '

,i\d * X JB jtf * > f*:^r5a 7A .a}^k70

1 /

.:o^’

'ii^ . fU » V 4- u<_' i A

•Vr

T-Mmom t*^ ?*Ja^>a^ ,-cf.i "i Ixwi^ « Bvtoiu o ’-•

1'..

'-<5•

. *,*

i’’‘'

baKr^foif:>ai* tn r-irh4Xkicd bns noi^^aT^iro^ art^ newtdrf.*

. '.3

t, -'i-

irvfOxi^ . ^ j a :^.‘n‘ 4 «rj>iotJ iTn is >^ r> a iaxfw -^i pnos

&r a/ti !^o a^il|!5-3V^ .aiiilumi ' rfoe j^iii \d

". M z'f Uaj':jaI^oI>nH; IcSSiHi ,al

aff7 ‘<1 i ^1 iiO 1 1 n %:> offt l^‘

:. «

>T ' v - jcftji WiBca Tqrq<j:*}V^al^iu^ -jtfit *:o arunat.iorfa'

li 9$g:s^ ion Be;o 6 dt* Tr\w

/

‘ " .yttbiu^diS 9jff * ?j 3Dnl 2

Ofii xc '. G nnxjD^i 1 al> l,o t»«ri- • ' Jii osti^nd-j ofU .

.’*

. • -A:'

;jfn!T( 9 fi sifj ^0 rff^i>,£ \ .

<e^

Vl'

:Jv*

** k.-*

•^- "C' r,

* t : ,^:iD

T'<v:? ni::»Tt 9! a4^£:*r'>^fc ?*c ^ at!!jKw•

* ‘3 ^“ _ ^ i

**J

n I

..* .'

'“rl.ds* i'i v.>'>•

3

Page 19: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

a

but c - 2P 1

3bu • E(see eq . 1)

where a is the average stress at the compression face overo

length dil and E is Young’s modulus of elasticity,

thus 0 =_£ dil _ 2P dil

3u 9Eb•

The length of the compression face of the deflected

element, d£ (1 - e) ,can be expressed in terms of t)ie radius

of curvature p:

p 4> = diil(l - e)

ord£ (1 - e)

2P 1

9Eb u^(l - e)

generally2 2

d y/dx

[1 + (dy /dx)^]^/2

The following equation can therefore be written for

d^y/dx^:

3 /

d^y _ 2P [1 + (dy/dx)^] ^

di? " 9Eb n^(l - e)

6

Page 20: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

'.*A’

(l .po 99S)^S

•'jur

m,

, f•’ .'

•s^vo itolgBOtqwo.’:) a*!:J od'i zi d ^Tsdw• !'

.

®

,viiax3^8^o Tio ^^ulufcr? n 2i J hnn Sh

J5';'-- . .V 'H-'E

^ XV- - i

* ' -*/, >

^IS ^ >Xi> 3' .tL- I» o.i»t»,j,»« I 19 A

J -. ;,4

'

im orn.

«K,/

hata^f^oh ^dS lo ijoi ajla^^o HjjRnoX oKT. •

• -ii ,’

,• 4\ i- 4

awlf>R*r or(5 *ig enrwj r'i *.l3 - I) -tb ^irrami^IsD

./ i 4

. 'aa%: Q 9TU:JRVTUD lo

r"!':•'* 4fiP* ^

..

•- I)4t» *» #a

«*

.

X

f5"-'IT^ S? (9 - t> ib

• , »

'. t"*«•

•, ,

•* .

j • , . .•/•

_I-W ,>•

+ J)

1'

Q

mTrS

ifll- nsJJtTw o<! 9io5 9t3ifJ (u‘3 JioiiBupo gfliwoliol: arfT

I

3^'

,

- - fPl, <<3^ ^dae xb

\,

,K -y'jSf t _:- •,

* lii’-

Page 21: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

This derivation is envisioned to apply to materials

which develop relatively small strain (e < 0.005). The

quantity 1 - e will therefore approximately equal unity.

The maximum deflection developed will also be small rela-

tive to the height of the member, and the slope of the

deflection curve dy/dx, will be much smaller than 1 even

at the point of maximum slope. The following approximation

will therefore cause errors which are of lower-order

magnitude and do not appreciably affect the result:

[1 - (dy/dx)^ ^

1 ^ e

A similar assumption is traditionally made in derivations

of elastic deflections and critical loads for conventional

structural members.

2 2thus the expression for d y/dx reduces to:

d^y _ 1 _ 2P_ 1

7^ P" 9Eb • 2

dx ^ u

2PSince the value is constant for any particular member,

the constant:

2P^1

~ substituted into the equation.

7

Page 22: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

ei sf, 1* . . 1,0 -0 -vb* 5 r«ij,dvir«5 -i-iT

•rrfT .fvdO-C > »j ‘hftx^i* f|oi^veb /foS

•jsR.\Hm: j'Twpo Yi!>3pnrtx'^;i5[^i^ XIIv j • I

‘ rr

iiV.-

t (trmJrxBm^•y

A 1. .

Ito bfif^ ,efCi o

;i^vf3 X /tDUfuw:. ^ ^

'<v .

(Toiss^ilxortiqz |(i‘rxrorXol..,^iwit fAuMilxim to snloq

7 9X?t6-lr©vfoi ig ^i*s d^oleiffaf;

XI ay

1

^'oa ob b/iA litAiJW

V

tiSvt>) - C]

m '' -»-<iiiI

-

- 1

S3

*ienor:UVf^«& ni ^!*. m \Hi^/T:^jc,?ibr.T^ n»|iqimg#^iA T“ilnil? “A"

‘‘ m•‘

•' V*

( iTAO iiti^ 9 fiot? lol 5om

B ia7U^'y(j\ja

t '•• ^ i?*'

!oX rO0Hi>p^ I*!*! noi>io^qxo adJ «tTnX

M

» ^ • Y ^

xb

,Tadr-s^3 “f

y' ^

?

1 nr; vfj . tl aolcv ^rt* od/j^C^

’ :Xai5j*goj• \'

- — . / -r.

. .^o j jrj:ut>A cfft ctHnl .' i-. JT^^"

a• -' -

Page 23: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

furthermore: u = u + y*o

The following differential equation can therefore be written:

d y _ 1—

2

” 1dx (u +y)

where : K, = 2PTCF

= constant

(eq. 3)

The following three boundary conditions apply to this equa-

tion (refer to Fig. 5)

:

at X = 0, II o (1)

at X = 0, II o (2)

at X = h/2; y = u - uo

(3)

6. Solution to the Differential Equation for the DeflectionCurve

An exact solution for eq . 3 has been derived. Detailed

steps of that derivation are presented in Appendix II. The

following equation has been derived for the deflection curve:

= ±fu. In

n/v" + y/u.

-)](eq. 4)

8

Page 24: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

;uot^itw j gnlvo orfv^ %

ImW *^

, «k

It -. pa)'

V ' -/“i,

1< i in wiir ^ ™ |4~ ~i

‘(y* ^<3t :

<1

inV

.111 1 -

ftatrenop

‘ %

. /".u }-^.y

uspo zldj 03 y.Iqsf6 enaliibioj x^^LnuPd ”>a‘fill gniwol^ *

(IS?. . •« ..:

I ,‘ : (i *ni^ 03 T9^9iJ

( i )

C '4

ce )

S^

y .

0 - ft f f

, 0 *• X

n ” ; S\rf • X JS

vi

'

» fb0 - -

-rAAJ

V

'jc'lj 'fo3 cio^kffVpi^ i f i j ft’Q # o^ noiJ»i^o2 jB.devitoD

Ls>x 'v^fOd -mii l i^T»« aoijuln^ ffA

Qi-ft , il. xiiKfiaqqA at '- nox ' ^ r^tob Ic ^^^5

: ov*Tiso SO

t

4 b tcl' ' : .' J- nof. l4yr^^ gitiviolj

\ * »«"

; -#

• •*

'

Page 25: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

if boundary condition (3): at h/2; y = u. - uo

is substituted into this equation, the following relationship

between P, u^ , and u^ can be derived (See Appendix II):

P

Pec

0.40528 Cl 1 - a + a Zn

where

:

Pec

tt^EIe

h2

The term P^^ is an "equivalent" critical load, computed from an

"equivalent" I , which is based on an "equivalent"

thickness of 3u^

.

Ie

2 7bu?T2

therefore Pec

27 7T^ EbUi^

12 • T1h

P becomes the Euler load P when the section isec c

loaded at the edge of the kern (3u^ = t).

uo

a = — is a measure^1

deflection.

of the magnitude of the maximum

9

Page 26: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

4) i„,o - y Ja ; (t)' non: fijrto:) y;'tKl>.iuo4*3j

guknm^lol t?iiJr ,a;i4^y^ «Iiil edw^fe*> 1 .

'; (H } N^>vi jr >*;,:> d triJV bfy: j.*l

- •**^^ ft •* V - 1\/"| IT «SSW.O*5#

- ^

f^v'-

V'Vlrj^40,

t ''.

.

^ -.

•k-" 7^ *

' -M'

^iliigoo'3 r£ ^iiiTj.

Is

«

rw^.:-a -I.:

>- V »

*

; «<

^ T

^'i;«

fi

Tt'

ZTV

‘at sci-r --'>^ jfv'i ^'J f'*'-»I

n ri-i^Jt 0t\: 'to Si'. ^ In ^nrsol

WA j

'•V *3

‘i'ffi*** '«' ' ‘V '

Bn

'’V^ m:?.;r f5 ,fIOii^S>Jl'/b

) #' (i

, . .

1.

.wI- .

' * - .

-l»

\

‘ • .-4' *'^C4n ‘, ^ A

k« <?''s S'

^ 1 y.,’

ff’i t .1

. ^Ji‘

<sBIC2l

. </

Page 27: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

7. Application of the Solution to Derive Critical Load,Maximum Deflection and Maximum Stress

Figure 7 shows a graphical presentation of equation 5.

The plot is non dimensional and can be used to solve any

particular numerical problem.

Values of P/P are plotted along the ordinate. On the0 c

abscissa, values of u /u. are plotted. It can be seen thato -L

each value of P/P__ corresponds to two values of u /u, ,0 C 0-1-

except for the highest value of P/P that can be maintained

by the member. The plot of the solution is interpreted as

follows

:

I

The value u /u, = 1 corresponds to an undeflectedO J-

section. Thus this corresponds to no axial load or P/P = 0

Obviously, no axial load could be maintained if u vanisheso

or u /u, = 0, since the mid section would be cracked over theo -*

full width, t. Thus the value P/P = 0 also corresponds to0 C

u /u, = 0.

When P is applied to an undeflected member and increased

deflections would increase correspondingly and the value of

u /u, would decrease. This corresponds to the portion of

the curve between u /u. = 1 and u /u, = 0.625, which repre-o JL o -L

sents a condition of stable equilibrium. At the value of

u /u, = 0.625 the maximum load is applied that the member

can support, provided compressive strength was not exceeded

at a lower value of P/P . Any further increase of P beyond

this point would cause the member to collapse.

10

Page 28: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

V I- 4.

. (-•

,LboJ 9vi*i^n o> noHulo8 ^YsS ftt»ilB'jiiqqA*

rtmixuM bnJj

.c aoiSBi*po lo fiOhs^Sir it ^moAs V ^*xu3H

vrtE s>vXoe oi 3 ^- njij biui t Brio 2 eft9mit> froxi si tofq oiXT/

I* '. .

,/i?9l i<J*rq -vit* TBluotS'tJiqK:-

• V-•4

sHi fiO .»3enilno ^rfj aftolx fca?ftvlq di£ ^o csofeV^

^sihf naos ^d naa 5l .4)?>dJolq ©"i* juV u trv estiisv .ezafosdJi^X-

* U

, ,.u\ li ^o 2911 r«V owl OS tl

I o!0%tO^ 9UIbV riDEO

fconiBjniBm ad «fl3 d»riJ lo enfav ’oi

ais beJoTqiaJni ai notJuJ^a «u4, le diii'l ^rtt . x idno® adJ xd

fj ‘-^

tv©J3snabmj ns 6J ebnofissTnoa 1 « ,a\ u buIbv ©riT• 9

!3WOXiOl Ic/

.r‘

,0 1\q to bfloC Ifiix*. a)^it6q^9ttoo^9 '

20it<ein«v u l.c boni-BiniBOc bis/co bsjol UiX£ onA .

'

•- .‘d.

oris 19YO b9-^OS*l3 9<f bl UOW fSO il 0 BE-' bi^*i ®lli .,0 “ "

OS cthnoqto ~'so^ osIb 0 E|#ifT *>1 .rllbrw

7 3* 4 >.0 « fU\ iS

^

» - T, .1 „ *9'I' f

.ba2S 3*x:>fli brre todtn^'ti bBlDoriobfti? o^ fto Mqqi, zi M

lO OUlcY 'JPB vigiTtbii.^qBdttOO 9ei53t-^AJL BTliOV aflOl tOOiftob

*i'?l

"kc isorjTocr >fi3 ol afeaoqsa'jnO.IJ aij4T .©£., vio*’> bl' . w ,uV^u^ .

: V tn :

• *••. ®,W

^-STqs»-j riaxdvr .SSc'.C » ,«\”t.' bfts 1 ^ av ; u j’

'. '_jV. aolav 3A ,iiukTdiitup9 aH[c*R)a io fioMifrt'oo s •ls-3'j'.aa'^^i

:

..ia<Jtia« add isds' hailqqtf ti br,di winixMt ©dJ ?it).Q » ¥3©‘£ifl©Dxa toiT ilsv d35C-»»3 3 avi'-'asiqrnoa IJsbivoTq , ftCK{flift.

. ^ Ifo o«B9Toni tsdltui' (fiA q\q to dJiXfiV Tf^V40^ f

4 3tqBl 1 03* i3dfiroT(t aril b Cuo-f /'

•'*

‘ %:%*^-. iMi

. .

x‘- ¥’

Page 29: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Thus the important conclusion is reached, that elastic

instability will occur at the critical load of:

P = 0.285 P ^cr ec

where Pec

27it^ Ebu,^

T~12 h^

Ebu.^

or P = 0.64 >— (eq. 6)cr

The values of P/P„_ corresponding to values of u /u, ine c o -L

the range: 0.625 > u /u, > 0 have little physical signifi-

cance. They correspond to a second deflection that can be

maintained by loads smaller than the critical load in a state

of unstable equilibrium.

Maximum stresses in the member, corresponding to any

load smaller than the critical load (P ) , can also becr

computed using the plot in Fig. 7 to compute u , and eq. 2o

to compute maximum stress:

2P^max ~ 3bu

o

11

Page 30: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

I

r

^ : • :'

•'• j' I .n "> i ') 1 *io t

:t^'' »jiS ^;iT

<?i 'e-a^ ^o

4- ^7 -S .'.f

. :1 n-.i

»" f J .

4*j r

. s

-'

(<3 .P-^)

a». 3 «.'Mi

»•

mA rW\ 'i> *. 0 rj jA o

* f i i. -

^3^\<l 2o iE'i;' JL t»

:-Is.T;’q ?»£ t U.jJ.jj\

ft <• 8-td . ©^iW -'J:ij

an?'r> :7ci 1 v . r,-^ r::b f>rro3G? <;df{'f . ariim:^

v ?-.s7:t;7 -r .fii- b^sl la:):f t.^ vd .^ s:ii&m

/ ' r»*;p:.’ -.' ‘'-•. .xo

iri /.b .ao '.7 C •3-!T

,

:r '3 r . ^ ' T 7 ruU-’^i .

M v ^l% Str^O . ^ , 'i} i-»

i

T 4^

c : ; j^ii

j > 7 L AiTIK tj;45 0X-,|1

i>'f-jlifj«OD 7. .t .. .. '^.vn .l.oi'; tMi

^ m: :‘

-rn T < /no3t'

*r

oU?

.“• 1R

* y ‘ 4 '

.

"N.' J» V ..

V r -w * ^ ’

fv'-T *'.'»«•'

1’ •

a..;*"

k .

vV‘.? -,4’s*

I i’U ^ '

Page 31: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

8. Summary of Theoretical Analysis

For the prismatic member shown in Fig. 1, made of

material with no tensile strength, and subjected to the

loading condition shown in Fig. 2. The following values

can be computed from an exact solution to the differential

equation for the deflection curve:

* The critical load:

2 3TT^Ebu,

Prr = ^cr

* The maximum compressive stress:

- 2P r

^max ” 3bu (^q. )

o

where u can be determined from Fig. 7.o

* The maximum deflection can be derived from Fig. 7.

12

Page 32: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

4:

I

^xaxlBftA fi5*>lio'ra'5r!T \Tammu?,

'/ " ebsm ,i .51^ fri fTWOfie DilsmaxT^ odS loH.. ‘;^ . msm

.a:;/*

arfj 0^ bdJDd(.djiJ? bnB ,rlJgne^T.f2 6lJ,an?^4 ofi f(:Ji:w iBiT^tBas

a©ii£6V gnfvroltnlt adt .gi? ni nwoda noiJlbnoo snibeol

lBlJn©T3^1iib edi ol (loituloz ^'i«X9 a<5 moi^ b©^uqn?03 rr^D

c'.

« #

.^ »

i *

''-<i t 1

(d' .p»)

©VTUD noi^3©r^©Ef* ©lit lalt itoit«iips

:bl5Dl iGOitjltD odT ,*i

0TO

: aaoTta ©vi2a‘37qmoo muralxcia sldT; •

(S .pa)

r,^

ns.' ^Uf?T xi*m'.;V‘ o

.gin oTOT> b©irl ffrtotob od aao u oiedw JO t

^

^ »

.V ,2H moli ij9vxt»b 9d neo soiJaoilab Qumixsm srfT .'*

® r-’tr ip’, 4’

V

Page 33: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

9. .Application of the Theory to Predict the Results of

Full-Scale Tests on Masonry Walls

9.1 Source of Test Results and Test Specimens

Only few test data are available which fit the boundary

conditions and material properties assumed in this paper.

The test results chosen for comparison were published by the

Structural Clay Products Institute (SCPI) [2] ,and represent

39 tests on full-scale brick walls of various slenderness

ratios (h/t),loaded as shown in Fig. 2. Loads were applied

at two eccentricities: e = t/6, and e = t/3. The walls were

solid walls of single- and double-wythe construction, built

in running bond. Slenderness ratios varied from h/t =6.6

to h/t = 46.1, Mortar was ASTM type S [1] and the compres-

sive strength of the masonry (f^J^) varied from 4,160 psi to

5 ,100 psi

.

9.2 Comparison of the Assumed Material Properties with the

Properties of the Test Specimens.

While brick masonry has material properties similar to

those assumed in the solution presented in this paper, several

differences between the properties of the test specimens and

the assumed idealized properties should be noted:

13

Page 34: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

I

‘ ‘

k-.

io ftiJueaJJ vioartT •rfj lo noiJaallqciA .6

nw^J ...

c?f li5W*‘*(tno2BM no stcdT^

‘\'4fSlM :’ -i «

izy

feat life o5I tesT lo 03tuc^ l .C

.4D

Vtalneak aifl tl.1 rfairiw 9l<ialievlr hib aiab 3i^n vfsl v|na *

“xfcquq eirfi ni fc»iM)ee« RsfJieqoiq la iTtsJfira ftnfi 2}t6ii jtbflofi

9iiJ vd b%dalX<Jnq aiow no zitBtjejiOO toi aosoih aJluzBi JeaJ ottT

(?, fi

jneEs-TTy? f>na , [S] aXuJi^enl sistr&ot*! yalO tBidtoi^jsZ'

: 1.MI."" " V ,\T

izairrabnolz zuox^bv eJIaw Xoittf “Slaos-rjtf^ no ^k »3m

batiqqa OJBV ebcoX ,S .3x1 ni^ mode es htibsol , (,3\^) eoiJBi

!i3W aiHfiw orfT ,^.\3 « a bfifi ,d\S • q ; 43i^i^^TJn^^^^, qwJ je

jrlllid »;t0i^crislJeito:> lo sIIilW biio^a..:.

o.d » i\ii «rt,Tl Iioxmv eoiJftT 5»9nTabtt9i2 .bned snlnnot riii'

-asTqmos a.-f* t-na tr'J'B:>9q\3 l<T2A ea^ lajTQH * I . d>

o', iaq iRetl bat-tRv f'li) x^tweaa oii:^ ip .iJsnsTJe »vi?,

ir"F"'

. Uqr *ar, c

, -= ^ 'i , .V 'j-W %F-fm "

' 'n,

'

SliJ ifitiw aoiJ'/sqoi't teiiaJaM bojuixaaA <»• Yo no3it.rqaioJj S'.

8

mmiO'aqB Je«»T otlt "io «:La3t9qoT5',i,»A'<

..- ^''' ./

g• 'VlW

* •«-

3(D£"fd 5firXVy

- fs%i)Vo2 , fofTBqf rri noiiTirujr ni bd/nua^fs

.

^. •

.. ..''-.Sri la /';:*^,-.rvlfl®(al . 'AVaJ’

i bniiB a.'i,v.T, joqqa Jeer »rfJ lo «»fJT3<[t>xq sufj^nt»ewdS eo^'not^a^liit)

_ ^ D

rt a j .» a ")cf bliictde cj, X boW^

^

4- '

.

• <>r V Iy

Page 35: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

(1) The masonry used in the specimens tested should be

expected to develop tensile strength of an order of

magnitude of 2-3 percent of its compressive strength.

This property would somewhat change the equilibrium,

conditions illustrated in Fig. 3, which were assumed in

the derivation. The change should result in somewhat

greater-than-predicted capacities. The discrepancy

would be greatest where stability failure occurs at

relatively low stress levels (large slenderness ratios

and eccentricities)

.

(2) The stress-strain curve for brick is not exactly

linear. The tangent modulus of elasticity at failure

tends to be about 70 percent of the initial, tangent

modulus of elasticity [3]

.

If deflections are predicted

on the basis of the modulus of elasticity at low

stress levels, deflections at high stress levels would

probably be greater than the predicted deflections.

This change in stiffness also slightly modifies the

stress distribution shown in Fig. 3. These effects

will increase with increasing stress levels at failure.

(Small slenderness ratios and eccentricity) .

(3) The brick units themselves have greater strength

and stiffness than the mortar beds connecting the units.

This discontinuity results in a stress distribution

which is much more complex than the idealized stress

14

Page 36: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

dd bI^>ode hejiij ni frnoaB«i odT (1).' ,

5o T9&10 8« lo rtJansriz »Xi?,t?n1 qoXsvab oi b»^Jooqx»

cVtti'iiqBios io SrS 'io. ofatrtlr.afini

mltciHufta 9fls aiacrfD t8;I>*9moe“ Muow vJiaqotq alrlT

ni boBtu^^e aiaw doiilw .£ .»xH ni b9J*«aoIIi"cnoi?ibnq?m

wj»riw»*toa ni‘iiuasT bloOriz agnarto ftxlT .noitavltab'

- YonBunT/Bib eclT . ea.iJi’ostfka baJ-jlbBiq-na/tJ-toaBaTg^

J» BTuooo aiulial xJiXXd83s aTerfw j«»jEatg arf bluow

e^oxJdi ^ai^atobn^lz e Lsv^l s^^tse vcl vlevi^sIOT

c '* Drl t tfT©339 blU3

Xl^DfiW ^on ai 'io>l,.oiruio odT (5!)

"i f

»TuX!a^ :^Ji erfT .TBonil^''

1nea/iB:r\ f Xni ifn^or^q OT iuodB ol *'

fdit^i'bs'iq *5TB 2 t ^>i:iodi3tdb K ~[ll \o aulubbra \

wol lobo«j o(fi eifind

hluow flalit ^nolS^^l'lish ,«i?JVoX9

.snoiJjart-jb ba^jaibsYq <<di ti^di TatssTg »d \Xda(ioiq, V

orl- 2 '*^iJJtbofS oela aasulii # ni. zidT

^aisKT .c ni; nwofia nu;»-rU;itTleiBM

.Vi®

i°~

.3t{iXi«V iSi ^20it^ ri^lw Iliwfa

/ ,% .(vt |3lT:rn-f^#S% lifiR aoibftl IlBm3)ff

/tf^n5.3^E 79.io^5r ^vftff savX^^f^adX eJiw ^faiid odT

?L_ ^ fV

noiJ'udtYjsib r,:.£?ai a ni aJXozsi \-5 ivniJno.ieib eidw»^

^ r ^I

boiilaohi rod^* itE'fU ;<^Jq<noD >-ioi:i fi'yim ei d^ldw^A

Page 37: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

distribution assumed in the solution. The net effect

of these discontinuities on strength and stiffness

has not been evaluated.

9.3 Equations for Strength Calculations

The test results presented by SCPI were obtained from

a variety of brick walls, and for the sake of comparison,

individual tests were normalized by dividing the vertical

load carried by each wall by , the load capacity of a

cross section subjected to axial compression: P^ = f^ bt

.

The value of f^, the compressive strength under axial load,

was in each case derived from the average strength of short

brick prisms which were constructed from similar brick and

mortar at the time the corresponding test specimens were

constructed and which were cured under similar conditions.

It has been observed for brick masonry [3] that compressive

strength in flexure exceeds the compressive strength in

axial compression and that the strength increases with

increasing strain gradients. In this case it has been deter-

mined that cross sectional capacity of walls loaded at t/6

and t/3 eccentricities can be approximately computed by using

the stress distribution in Fig. 3 and assuming a compressive

strength in flexure equal to 1.6 times the strength in axial

compression: af’ = 1.6f’.^ mm

15

Page 38: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

rro f'tlJ I o C f’ji B!S>mu«a« 1*0 i 7 iivil:t tibiae ’mb*S

tefi no f.“ eeofii ’io

''-yZ-K'

’Jon

«nox f(i.^n:aiiS -fol ?rtui:^Bi;pa’ 0

mOT^ 0^nlf?icTo 9tow T^'>3 yd^

, rio^iTBfjmoo 1^0 9£f:af ufte ,ailX£W ^o \7 9%inv iS

tBo ‘r 7^ 9V &ffJ 3frllfiviJ> \<1 b>>tiX«inton 9"caw r^ubi /iJb/ii

« ^0 y3iOBC|ii9 b««I Td lifiw rf:>«a yd 5

. 7 cf ^ lis^xB oj boj-^oldne iic

r

fir o ^tu '

-,

,baol I»ixa T^r» litgnevft >iw'itsg9»irf)[moo »fj:r lo ani^ev ^dT

tiorJi; rfjyri^iJe as^*Xjva; ^nlr Hd**.. nl J&w

bna jiT'jiid t*IiKtt li r^ir^^Ao:) aiw rfDld*-/ tm^iirjgp dA

W'

tfcas '>d :7 arrt^ 5 >: xailfb^

.enoHibrto^ Teliaiiit rsw d^xdw Lx.^ bsiD^tiJ^aoD

T »A -

dvi,ri^«ycr;.>*j 5sdt fb!i‘ yrnfaifa^ i^iid b^vtaflvlo fr^o'd aad^il• '• - n ] •^'1

v'i^t,.^ Vi

^nl it7;jn‘Jiia av i '>ili *9ti)XeXl ni

,n 5 i*-.» dfftdl noxa^oTq»op'

=j .'•V*

*i 3ic?£) rsoDd ^^:d 1i a2?;i eld: 'it ^ nXjwt^ ?pf)

',1

i'Vt J* Li 9b«'>I eiinTtf /^ri:;*n«p Inno^S^ymi xsdi iaftirtJ

tiniA'u yd b97 ii«|«co ™-;XoXifiEwii(Ayq<l 9 tf nc:? .t9 i:yl^-r:r*n.!5^99

li o<cr» *7 nl f Ol-Jud Ht alb,:J

^ ^ _

In J^. Ai nl d $si,a'>T3 s 9 iX ^ ora 1 1 ^ . i o.T I « tfgf :>'ir t' f *l rif d

?

i

f‘. V

’ '

*

', 'i * 4

W t'/-'«K' _^’ -.-•i V‘"

.1 Bbl^. '

.

/,' ' »

Page 39: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

It was also determined, that for the walls tested, the

modulus of elasticity is predicted with sufficient accuracy

_ 3by assuming the fixed ratio of: f'/E = 1.215 x 10

The following equations can therefore be derived:

Cross Sectional Capacity:

at e = t/6:

at e = t/3:

Wall Capacity:

Walls may either fail when the flexural compressive

strength is exceeded or when elastic instability occurs.

For the case of a compression failure, wall capacity may

be computed from eq. 2:

P = 0.8 Pu o

P = 0.4 Pu o

at e = t/6:u

P = 0.8 Pu o u

o

and =0.8—P u.o 1

uat e = t/3: P = 0.4 P -2.

u o u^

P uand ^ = 0.4

uwhere — can be determined from Fig. 7.

Ui

uo

For a stability failure the following equations can be

derived from eq . 6:

TT Ebu

p„ = 0.64 ]_ = 0.6427 h \ ^ /

16

Page 40: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

ftl,

yIf

• *

9ittf .()•»? a^j ^I(rw 4»dt lot Ss^t ;b okIc ?i>w sT

ysETiOii. Jasu^aiTlii? i!;fw bw^afbsiq «f 5o eufobom

f>l X .« ftt^K't baxil 9/(j gn*wavSE

tbovixeb od oxolMadJ n»a| e/iai;Aufia aniwollo^ bxIT' t< ,1

;rvt'iasqBl loaoi' Jog<t a.^OT^

^ 0 » ‘1 ;d\jo If- * V ^ j

> 9

"Ja >: v:

9!-(J iaBfcjsD. IfiaW

9vi223tq«oo XflTOxan orfj a^iiw Ii*>' V -9

4. M

\Bm Hev/ , 5it;Xx&^ s lo prti lo^

oij

:2 .po i«ot1 boiuqmoo, 9d

fe- 8. a *- :d\j * d iB

jj3.0

....

fl

1* -Kw bna

o

:v.'^'

ifi o

ICl

I

P.T rro"^> bon rental ‘jb ->cf mu — o-roii'

»*' f.- .aBKs

^.,^4 r^v*v ^.<v-Ot

- P^ moi*^ b^vi|'->b' : „./X«!»a5 ,T.i

,

I J '-..f

Wi vT. '

,..,

'

.„" (l^).V, ••» v;i.- V--» / V-P

^ - Vj , :

>' V ji.5, 5:V

. V '

,^.:fi’*tr

0 • ^ , 0 ® ^

Page 41: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

E = (fVl.215) . 10

and P = £’ bto m

P = 192 Pcr

cr _ 192

Pq (h/t)

for e = t/6;

and P TOOcr _ 192

r4i^)

3u^ = t

Pq Ch/t)

for e = t/3;

and P

=2

cr _ 24

Pq (h/t)"

The following general equations for wall capacity as

a fraction of P^ therefore apply:

at e = t/6:

P upH = 0.8 —

whichever is smaller

at e = t/3:

P u= 0.4

o

ou.

(eq. 7)

oru 24

Pq (h/t)"

whichever is smaller (eq. 8)

17

Page 42: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Kft Hew to~t «.T>i?ctfo# }*-r4,«63 Sftiwo;io^ o(Tp"'‘

,

;?£<tqa q ^oiiacii a•r ki ii

'

«; »

:d\t V

-Am:

{t . p^)

1.

,.. <

. s> *. ^

^ ^ ^, jh> Q j

S ItiA.f

Page 43: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

9.4 Comparison of Theory with Test Results

Curves based on equations 7 and 8 are plotted in Fig.

8. Note that for the t/6 eccentricity compression failure

occurs at slenderness ratios smaller than 22 (h/t < 22)

.

For the t/3 eccentricity compression failure occurs at

slenderness ratios smaller than 11 (h/t < 11)

.

In Fig. 9 the theoretical curves are compared with

test results. Test results at t/6 eccentricity are shown

by the triangles and should be compared with the correspond-

ing curve. Test results at the t/3 eccentricity are shown

by the circles.

In general the trend of the test results is correctly

predicted by theory and the magnitude of the load capacity

is approximately predicted. For the t/6 eccentricity capa-

city was overestimated for h/t = 14 by about 101 . At

h/t = ^6 the capacity was underestimated by a substantial

margin, probably because at this low stress level, the

effect of the tensile strength is significant. For all

other slenderness ratio the average capacity was approxi-

mately predicted. For the t/3 eccentricity the capacity

also tended to be underestimated at very low failure-stress

levels, however, in the range of stability failure, the

theoretical curve tends to approach the lower limit of the

measured capacities.

18

Page 44: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

.'V, .‘C’ l:*'-

ib :w r io noaxtjaqmoi)

'U f

• Ji'P l^ ^!iioi:)ciip?l n^ji'L^^ucT

3 TUJ. U1 «oi.’«Vij|^» - Ji-5 ft}n*o.'>9 ^1^J ori"i» jedi SJOW^I’ J»

riC > ^\;f) iS imt^y r,mi <ciUsr ^iei^nrebaale tS'&ru:30o

58 ^rtiZfoo " t' If u [ i

vjr

-

T p a.‘‘ >5 i*:)iT 5ns3 D 0 21 \ii 8 rf^4.,TO^

TitUaS: zoit&t ejiff-iT^bnalsyUHj

rl;rt« batcq-fioo oiB^. 2 f>vtt.o 'f&3i3 3!'?>^»d3 0 - atH «? .

J

nwode 9t£ \jiJiiJ£t#30» d\i -’« p.jJas'j

™.

-f^iiocrai'JToi odJ ri^ivi srf bitioHe biis >3i,^nL£iiJ f\d

BSisa »' ? . :v'4isi(twod? 9TM \3i3iTJn^»33 £\5r adr I^fu8»t seoT .sviUb^ini

..eoIaTlv.

f*

jf<!J '

^»i aiiUJf^x Jo i 8 ibii-r>^: ’iff}

f- * J

^^ifc 5>xq

-'8 nfl3 *^:tl:^ttlin'‘^-00 D' d\ .7^ t . 5i>5

'»rb ^:;

7 zi

mm . -V '• '

. %::5 >. .#01 rc'O^f; V,i (^r « j \4 fe^-Tf ra->7«vr-

I Fittntt E X* i 3 tu 'i:3 ,^x(? V^jj* 1

*

1J 5 .lr*vt;ii ^fr^^dorq;*,, a^xjsin* ?;-'d ' .' ^-

, p*“ * £—iM'

# i { «f* *>5 '^>if5 lolit .^^I'Tfrac . -... ^-j..

-JxaXffCTfi 28vr YJivfjqjab' r/;v.7 . i.^fl7o' ^' .!omi m ;t: .

v.tl*)^q«p Y*^ f 3l7tfi3a>«. IA|7 #ifer tc?:! , L37v/i>eTq,^i’Clo5^fifii

>;•* .‘^ ^«5*r j «-e-rf7i wol H^ov 78 'jd 'd#l8

o il ,*>'r‘ii^h^i -^P

iXdi/^ .od *^'-gX.aVfli

iir {jo -fri« f

,’ 1 fl'' ';

,3TC«aoilJf

3??;«3

Page 45: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

9.5 Conclusion From the Comparison of the Theory with

Test Results

The theory correctly predicted the trend of the test

results and approximately predicted the magnitude of mea-

sured capacities. Since equations 7 and 8 are simple and

relatively easy to use, their practical application should

be seriously considered.

19

Page 46: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

' V -Vi.

;!?

Vi iCiiv ^(ii •o't'^ noceulJ>nQlr Z i

E^Iwao>5 "t>eT v ^3

rti

3a*>:Tn!^((i‘ 3^0 brr:^f;^ ojU vi3 *^100x1:? adT

-63f?i lo abifiiiT’^attt ad:} j>ai^3lbfeq «ili^aat

baB a^cimli 8 bfr« t efrai^c/t^a <J3|iia ba5u«

hiiuoat xjbilnal 1 qqK ,^an <^t yz&e \Li>Tx^»Ioy

, .

?a ,1^

‘ * am .rfeafebl^rtoa ylaiioiTae ad

Page 47: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Appendix I. Notation

af ’

m

b

e

di

E

£’m

h

I

Ie

P

Pc

Pec

Pcr

Po

u

t

u

ui

u.

flexural compressive strength of masonry

width of member

load eccentricity

incremental length

Young^s modulus of elasticity

compressive strength of masonry under axial load

height of member

2 Pconstant (

9^)b t

moment of inertia

2 7bu'equivalent moment of inertia (

compressive force applied to member

tt^EIcritical (Euler) load ( j) ^

h Ti El"equivalent” critical load (

h^critical load of member

cross sectional axial-load capacity

load capacity under eccentric vertical compressive load

thickness of member

distance between line of action of compressive load

and compression face of member

distance between line of action of compressive load and

compression face of member at midheight

distance between line of action of compressive load and

compression face of member at member support

20

Page 48: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

no|:lEJ(lK . I xib03qi|AW*4 !.

* *- '•

y ' ''

vTuo?.j^ 2? 1o 0Vjr^s^namG3 iB-rUxon Ms" * * (!!

I[ jdnBfrr Jo rfsbl*^* ]' d

Pi

vjroriJlidDDB bBoL hm b

k > *1 *

vyi •£.: j

m vj to lien lb sulLLoom a * s^fUioY 3

bBj>l fsixE lobnu \inoiBm ’io ©vi4

'• -rji

'm '. i^{ jr

yrf

qirciifm Jo xf

f| C - r '

1

fneJ 57103 ,;i3

, C’^rr) lo JSJwaom}-f-4 I,t^ ^ *1

„..y*

fr ‘‘f r 'V*— ) fiijrfanJt irt!||da3T TO^iJBviup^ I

» *

#

r, .-V

•'t»dm3‘R oj b9TlqqM «ioi svi E^OTqmoziJJ 1

tryn -H . Vi]^

(-y bAD/ ”iAdfBViii,pd”i

/I a

1 1 df ' 51# J 0 0£ Oi I. so l : 1 1

3

.. 1

' v^lD^qnt) bSiOi^iBiXB lEHOliO^e « eOToi Jl..' 0 . :_

bijol ©vi^ioiqtnoD oH^nt>ooo j'ybiV'\7i'jfLah'j LbcI 1 ^

T:djp^9« iu |S i

bfiol 9 ‘i\ip^,j»iqiuoo *Vo a 6itps anl? ‘ vf

^if''"'.' *; lo ixOX 4Te5^qflr?io bms >j

.

' bnn buQS ‘^•vler.orqmi^zt lo noslos io 9 /fr^saib^ u• o

,r-

I>E

, 1

^ tn mbm noi cic*^\r4moo

ivl^^OTqraoO lo froxt'^i .' Q BJCihiaib .u:

4», .. . X-

J'T 0q e 1 3<k3 t44iT } i. fo d c; 5fa 1 b 5 cl n

o

i ^ s qnr€»

o

ft ./

•A^ ^*LM .%0

\

*1

Page 49: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

a dimensionless parameter —G strain

4) change in slope of de flection

P radius of curvature

a compressive stress

ao

maximum compressive stress in

amaxmaximum compressive stress in

curve

cross section

member

21

Page 50: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

'. 7 ^

't

-2- ^a^lftoi ^aOTib 7 '

t>

•-I 1 >

f,-,

» «tiC)

’,.'' t Wv1 1'.-,'

>

nifiTje

0VTi-'3 ffOxJoi^Iieb lo oqolE nx ognsH^‘

i.'-.; .- !•>; ( it

, '5 ^ !'

VdifutsvtUD lo q

*^vi ^ t>

noi^Dae ;^8otD ai 2a3t^« avi2^o^qmo:> o

? :

' v;»' iii,

' '>{

iad®ofli nl EebT^e avf220tqmo3 nujorixam ' Vt>* xaui

^'

i ^ ‘ ^ . 'a*

Page 51: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

APPENDIX II

DERIVATION OF SOLUTION

Kl_y)

2 > where2P_9bE

Boundary Conditions :

22

Page 52: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

It „ . . _fvl

' O

rtabcLung

‘""' »#®r'' .' \ i'

.t A» I

^.Vi

'!ik\ li- , xb .,^025^,-.?(^ / xb xb^ ^ n(b xb^

Ir-0 '*' ‘“"‘^ rXS*^ V *f O DLi

O J|_T,^,. -

-'

1

<0 ' i« >

xb1B

»SJJii.

(It( + x;

o ('

- Jft

/_1_A‘'" HT\ + ^. . 3^,;>'

\'T 's'"'/ 0

'-’' -^“ ^^

i dfliixv-i

“« V. -v r.,,

.,-3

> 7,.fx—

\

;->

• C.Oii^D.-'^^

4^

^ Jf {k.±^,f,+ >.-*b -^a'S

"iJ •' \'^' "

Ti,

y m >*3‘.-:i-S^l

Page 53: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

ay - Vy Wo + y) + fJvy I ^ * y>

= >/y (^Uq + y) + Uq Zn (Vy^ + \/Uq + y)

•*

• X = ± [Vy (uq + y) + Uq Zn (V7 + >/% + y)]

at X = Q, y = 0;

• • C2 = -

^ = ± ^"o + y) + Uq ^ ^)]

Substituting K2

X = ±1 [j v (u, + y) + u,

Solving for u^:

at X = -, y = ui - Uq;

Assume a = ^̂1

„ 9Eu, 3

P = —o-^ a yj! - a + atn(nF?

!a(P

23

Page 54: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

t ( * V '?* *

I If

’'("-Hlii

H *• ^ kI o“ tv <- o«>) tV r ']

Xi>

+ [<V + o"V + '’S + ^(V + o'’^ -

:0 « X ,0 X 3a

,D + o*'

nrL.t<5 -o** v^ * ^ ^

a.)„5 , TTf^-lJ 1

1

%^1 ,/ .f

'-

^m

gxiJtJu3l:3a<fl/3

• l‘f

:^u 3oi '^aivIoS

,'*'S

[(i^V

K '-4

r^oU !* fU *• Y X 3^

+ - I^)<5 l±

[(?V*"' » T TO

- ’.. C^'l

'"''!.<

't*. "^''T'^virC

:'./.• v4:

• * » .n

V-

p vr*j - iV

1-

it •><

* y--^ V

Page 55: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Let P "equivalent" critical load

then

or

ec

27tt^ Eu^12i?“

P

Pec

0.40528 a 1 “ a + a Zn2

— = fMec

24

Page 56: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

» ^*1* p>.'- ~'

Page 57: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Appendix m - References

[1] American Society for Testing Material, ”ASTM C270-68,

Standard Specifications for Mortar for Unit Masonry”,

Philadelphia, Pa, , 1968

[2] Structural Clay Products Institute, Recommended

Practice for Engineered Brick Masonry , Tables 5-20

and 5-21, McLean, Va., November 1969

[3] Yokel, F. Y. , Mathey, R. G. and Dikkers ,R. D.

,

'^Strength of Masonry Walls Under Compressive and

Transverse Load”, Building Science Series 54 , National

Bureau of Standards, Washington, D.C., January 1971

25

Page 58: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

tol Yt €# t3o3i [XIr.

^"yinoe£M t ioJ lol: j&ig jttoH Toll efrollg^llx:>»q8 bT^bflBT^Viijl

L'W'

8d<)l 4 •«*! 4 airfalsb^Xiiit

sW®I

^ ^ ^ IHp

' bobnoirnnopg^H ^oiutxJgnl ^jrolaboiJ? yslD XatxiJDiiTJ'^ [S]

; ,

OS -3 <j® Xcf6T . « Ytao ^? i!sM bftTdDiiigjfiH Tpl#v,/

’’ '^

' tP '

*'

€dOI TadmdYoH , * sV y, nsavI^M tlX-S

,.Cl .« ,;*Tca3(iia bna ,0 .51 ,

xarfJBM". ,Y *"4 .'IojIqW f5]

V.'

lV' •».'«% bna Qvi aaojqmoD T ^b/tU^iXaVI xtnoesM lo rftTjft6

*

r :J 3 !

-.1 Lssctoi SzA ^ aal t oHa 5pit9’|3 ? fifti b I lufi ^ ’'bsbJ ^aidvenstti

TGI YTCunst ,^D.0 ‘^no:t^aida£W\abTAbmltP^ lo ubstiMt ,

J t =1.]

PliM n'

^ 'W vT .‘

.

1 / ;‘r '^- >.

t j I '.

'*«'^

ixr - .-. .AV , V’'t

1

if

I

fr '

,V-. (';

^ .>T :v «' -v

'

^

r . :/*r*nn »

'S ': vm

i|bW A'N'’"'

v.^.

Page 59: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

1-^ t -H

Figure 1. Geometry and Dimensions of Member

Page 60: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE
Page 61: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Figure 2. Loading Conditions

Page 62: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

*r-

V

V "

« *,^

' •*

; 'i^yl

•'«fir

tif

• 'm.'‘‘4 ,'t' /'

*

'• ^P'lCi*

fi feS

^ '' r*' ' ‘HVv

\ rk. ‘iV,-». j'‘ |i .

,|i

,:M;

/. -S

P '.'.' '.«• ^'- %.* ny«jejQKii.3 t ^ !!\'t e^.- ' ^

..

' fi-W

Page 63: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Figure 3 Equilibrium at a Cross Section

Page 64: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE
Page 65: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

p

Stress Distribution

Cracked Zone

Figure 4. Equilibrium of Member

Page 66: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE
Page 67: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

x=o x=h/2

Figure 5. Deflection Curve

Compression face

Boundary of uncracked zone

Figure 6, Curvature

Page 68: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

^-*n

9f1t to 9V1UD noitoaltsGrs^

soot nol829iqmoo )

^!3

,r jr ‘ft!

i.vir

S\r1 = x

V*

"V

0=X

9vxoD Rol:r^9Xi9Q

>

.i fi

.JL ' ,5 ’1‘

eoot noieaeiqmoD

t - 'h >-j>-^

r )1 LJ /1 /H /1/*-

-it

lb

L 8rtbttb3)laDionu lo ^obriLtc8

7.'

r ;i^rV?vt 'V','

iX' Jii .-ltl

aTiotfviyO ,,..i

P.'W

Page 69: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

p

U|

Figure 7. Graphical Presentation of Solution

Page 70: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

9

Page 71: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Figure 8. Theoretical Strength of the TestedWalls as a Function of the Slenderness Ratio

Page 72: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

w'

V.’

'* ‘^*'

- Mr «» ,(',

r" !•••'' 4 .*^

'}'^y f ^ ' i' ' -V*rt'4*

,5j,

/ *.;* • '

!

’•

I * • •»’ 1 • m>

4’; V:' .V

\a !.

?t:. .:'

f': ''<'.

4 8\t=0' Hi

3flu^iA^‘ noieeaj^qMoo

.I'",,.. < v.U i? \

,?. -'

. £_ ao-* V

/

3P»JJ|A^ YTI.ilaAT8-^/

ao:

5\f=a >0.^1

MOI2«3fiaMOO3AUJ1AT

‘VYVI^ 06 fj® QS

(S' ,• ,•

t\d

'^'*(. JSt

iir

1. 16,,

.v»9ih«

.{jiinuU Si* siirf^

Page 73: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

Figure 9, Comparison of the Theory withTest Results

>>

Page 74: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE

•SV *• If-

V r^’.. ,-/•' ‘V.

1 ^

^‘ ‘ ‘

' Jl~

^ l\ -:A tr -V. • « T Wi

* ' V ; v',vAT?r '**^^'

v.-^'-* * ‘ ^. .

.'ih'jj ' , 'Vx;:;.

pyf:. .-i ' • ^ ' "

*. “y^;

/tr

41

4

i

^ h ^ • y 3\t sft "5

'Kr4 *'!

( . 'i

i‘*

V

(' S\trf0^:

I

m

•'ji

fc?’’

‘V« M

W.jf» .

St

y ,‘. ...

./ -iilL

f*\l!

010 >:^i,oe'. Ofi':'i|,. ' EBf

,.; . : 'a:-.it^a‘j/f ^tfeT

1

Page 75: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE
Page 76: NATIONAL BUREAU STANDARDS REPORT · 10388 ELASTICSTABILITYANDDEFLECTIONS OFECCENTRICALLY-LOADEDCOMPRESSION MEMBERSMADEOFMATERIALWITH NOTENSILESTRENGTH By FelixY.Yokel IMPORTANTNOTICE