Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials:...

22
WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT Nanostructured Thermoelectric Materials: From Basic Physics to Applications Gang Chen Nanoengineering Group Rohsenow Heat and Mass Transfer Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 Email: [email protected] http://web.mit.edu/nanoengineering Acknowledgments: J.P. Fleurial DOE, NSF, and Industry

Transcript of Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials:...

Page 1: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Nanostructured Thermoelectric Materials: From Basic Physics to Applications

Gang Chen

Nanoengineering GroupRohsenow Heat and Mass Transfer Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139

Email: [email protected]://web.mit.edu/nanoengineering

Acknowledgments:J.P. Fleurial

DOE, NSF, and Industry

Page 2: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Outline

Why nanocomposites?•

What we have achieved?

What we do not understood?•

Application opportunities

Page 3: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Nanoscale Effects for Thermoelectrics

Phonons=10-100 nm

=1 nm

Electrons=10-100 nm=10-50 nm

Electron Phonon

Interfaces that Scatter Phonons but not Electrons

Page 4: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

0

20

40

60

80

10 1 10 2 10 3 10 4

THER

MA

L C

ON

DU

CTI

VITY

(W/m

K)

LAYER THICKNESS (Å)

BULK

SPECULAR (p=1)

p=0.95

p=0.8DIFFUSE (p=0)

Yao (1987)Yu et al. (1995)0

20

40

60

80

10 1 10 2 10 3 10 40

20

40

60

80

0

20

40

60

80

10 1 10 2 10 3 10 410 1 10 2 10 3 10 4

THER

MA

L C

ON

DU

CTI

VITY

(W/m

K)

LAYER THICKNESS (Å)

BULK

SPECULAR (p=1)

p=0.95

p=0.8DIFFUSE (p=0)

Yao (1987)Yu et al. (1995)

Heat Conduction Mechanisms in Superlattices

Periodic Structures Are Not Necessary, Nor Optimal!

Major Conclusions:

Ideal superlattices do not cut off all phonons due to pass-bands

Individual interface reflection is more effective

Diffuse phonon interface scattering is crucial

10-1

100

101 102 103

Capinski et al. 1999Capinski et al. 1999

Yao 1987 Yu et al. 1995

Nor

mal

ized

The

rmal

Con

duct

ivity

Period Thickness (Å)

T=300KAlAs/GaAs

In-Plane

Cross-Plane

LD

LD

Ideal Superlattices

In-Plane

Cros

s-Pl

ane

Page 5: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Nanocomposites Approach

Increase interfacial scattering by mixing nano-sized particles.

Enable batch fabrication for large scale application.

Nanoparticle(a) (b)

Page 6: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Low-Cost Synthesis

AGraphite cylinder

Graphite piston

Current for heating

Force for pressing

Sample powder A

Graphite cylinder

Graphite piston

Current for heating

Force for pressing

Sample powder

Page 7: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Thermoelectric Properties: Bi2

Te3

Poudel et al., Science, 320, 634, 2008

Page 8: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Six

Ge1-x

System

Joshi et al., Nano Letters 8, 4670 (2008)

Wang, et al.

Appl. Phy. Lett. 93, 193121 (2008)

P-type SiGe

N-type SiGe

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 RTG SiGe Si80Ge20B5 (run-1) Si80Ge20B5(run-1)- annealed 7 days Si80Ge20B5(run-2)

ZT

Temperature ( oC)

0

5

10

15

20

25

30

35

40

45

200 400 600 800 1000 1200 1400

Ther

mal

Con

duct

ivity

(W.m

-1K-1

)

Temperature (K)

No large cold welded agglomeratesShort Pressure Sintering at 1275 KLong Pressure Sintering at 1475 K

Undoped SiSingle Crystal

Doped Nanobulk Si using only "cold

welded" agglomerates of nanoparticles

Undoped Nanobulk Si

Doped Nanobulk Si

Bux et al., Adv. Func. Mat., 2009

Page 9: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Understanding Electron and Phonon Transport in Random Nanostructures

5 nm

Phonons: •

What is the mean free path in bulk materials Phonon-phonon Dopants Alloy Electron scattering Defects

How phonons are scattered at an interfaces Interface roughness Crystallographic directions Anharmonic effect

Page 10: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Molecular Dynamics Simulation of Phonon Mean Free Path

10-3

10-2

10-1

100

101

102

103

0

10

20

30

40

50

60

70

80

90

100

Mean Free path (m)

Per

cen

t A

ccu

mu

lati

on

CallawayAseMD

Henry and Chen, J. Comp. Theo. Nanosci., 5, 141 (2008).

Si

Page 11: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00

0.05

0.10

0.15

0.20

0 30 60 90

SV

TO

SV

WA

VE S

V TO

L WA

VE

INCIDENT ANGLE (DEGREE)

REFLECTIVITYTRANSMISSIVITY

REFLECTIVITY

TRANSMISSIVITY

Interface Reflectivity and Transmissivity

L(v)1(v)2

sv

L

svsv

We know how to do it only in the continuum limit, with perfect interfaces!

Page 12: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Thermal Interface Resistance Between Perfectly Contact Solids

Cahill et al., JAP, 2003

No model can predict interface thermal conductance except at very low temperatures.

Phonon transmissivity and reflectivity at interfaces are crucial parameters to model heat conduction in thermoelectric materials.

Page 13: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Electron Transport

Where thermoelectric effect happens?

Interfacial barrier height

Momentum conservation at interfaces

Scattering inside particles

Energy dependency of scattering

5 nm

Page 14: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Thermionic emission at grain boundaries

SiGe nanocomposite,

Eb

=0.2eV, ND

=4x1020

cm-3

Need: Em

Page 15: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Nanoparticle/Nanograin Scattering

D/2carrier

Dominant electron wavelengths

* ~ 6 10nmc

hm v

Grain size

m~ 20 n30D

Grain boundary thicknessm~1ntDebye screening length

1/2

2 ~ 0.5 m1 nDkTLe N

Nanograin

D/2D/2carrier

Dominant electron wavelengths

* ~ 6 10nmc

hm v

Grain size

m~ 20 n30D

Grain boundary thicknessm~1ntDebye screening length

1/2

2 ~ 0.5 m1 nDkTLe N

Dominant electron wavelengths

* ~ 6 10nmc

hm v

Grain size

m~ 20 n30D

Grain boundary thicknessm~1ntDebye screening length

1/2

2 ~ 0.5 m1 nDkTLe N

Nanograin

Page 16: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Electrons: MFP vs λ

5 10 15 20 25 301

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

MF

P (

nm

)

Electron wavelength (nm)

Minnich et al., Energy & Env. Sci., 2009.

SiGe

Page 17: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Potential Applications

Industrial Waste Heat (DOE/ITP)

Renewables

Transportation

Main AC: TE Local cooling of seats: TE

Catalytic converter: TE

Radiator: TE

Main AC: TE Local cooling of seats: TE

Catalytic converter: TE

Radiator: TE

BuildingsCombustor: TE

Solar Panel: PVSolar Panel: PV

Furnace: TE

Refrigerator

HVAC: TE

And Entropy is Generated

Page 18: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

System Consideration

TobjectTcold

Thot

TambientT

Tte

Sometimes, thermal systems more expansive

Page 19: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Heat to Electricity Recovery from Gas Stream

Hot Gasm, Th

,i

Hot GasTh

,o

Heat Transfer Surfaces

Coolant

InsulationHot Side TemperatureTH

Cold Side TemperatureTc

For thermoelectric devices, TH

higher is better•

However, maximum heat intercepted from hot gas stream, mcp

(Th,i

-TH

), decreases with TH

Page 20: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Efficiency Expectations• Th,i

=600 oC, Tc

=50 oC• Optimal Hot Side Temperature ~ 270 oC

0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

0 . 3

0 .5 1 . 5 2 . 5

F I G U R E O F M E R I T ZT

EFF

ICIE

NCY

Ideal Device 50-600 oC

Ideal Device ~50-270 oC

Line: System Efficiency 50-270 oCDots: System Efficiency 50-250 oC

Page 21: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1 1.5 2 2.5 3

EFFI

CIE

NC

Y

FIGURE OF MERIT ZT

Ideal Device 50-600 oC

Ideal Device 50-270 oC

Line: System Efficiency 50-270 oCDots: System Efficiency 50-250 oC

Ideal System

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1 1.5 2 2.5 3

EFFI

CIE

NC

Y

FIGURE OF MERIT ZT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1 1.5 2 2.5 3

EFFI

CIE

NC

Y

FIGURE OF MERIT ZT

Ideal Device 50-600 oC

Ideal Device 50-270 oC

Line: System Efficiency 50-270 oCDots: System Efficiency 50-250 oC

Ideal System

Locally Optimized Systems

TEG2

T2

TEG3

T3

TEG1

T1

TEG2

T2

TEG3

T3

TEG1

T1

Hot Gas • 1-3% Absolute Efficiency• Engineering Room• Materials Development

Page 22: Nanostructured Thermoelectric Materials: From Basic ... · Nanostructured Thermoelectric Materials: From Basic ... Enable batch fabrication for large ... Nanostructured Thermoelectric

––WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MITWARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT