Nanostructured Electromaterials for Energy Applications

35
Nanostructured Electromaterials for Energy Applications David L. Officer Professor of Organic Chemistry Intelligent Polymer Research Institute University of Wollongong [email protected] ACES – The European Dimension NCSR, DCU, Dublin 21 May 2015

Transcript of Nanostructured Electromaterials for Energy Applications

Page 1: Nanostructured Electromaterials for Energy Applications

Nanostructured Electromaterials for Energy Applications

David L. OfficerProfessor of Organic ChemistryIntelligent Polymer Research

InstituteUniversity of Wollongong

[email protected] – The European DimensionNCSR, DCU, Dublin21 May 2015

Page 2: Nanostructured Electromaterials for Energy Applications

To create the next generation of electrochemical devices via the precision assembly of nano-/micro-dimensional components into macroscopic structures to deliver unprecedented device performance.

The Vision

Page 3: Nanostructured Electromaterials for Energy Applications

The ACES II Structure 2014-2021

Page 4: Nanostructured Electromaterials for Energy Applications

3D Electromaterials Theme

Structural materials

Characterisation

Electromaterials

Modelling

Fabrication

Reaction centres

Page 5: Nanostructured Electromaterials for Energy Applications

5

3D Electromaterials

Porphyrins

Thiophenes

Spiropyrans

Conducting polymers

Graphene

Page 6: Nanostructured Electromaterials for Energy Applications

Hydrogen

Light harvesting using porphyrins

6

Page 7: Nanostructured Electromaterials for Energy Applications

Dye Sensitized Solar Cell (DSSC) “Grätzel Cell”

Photoelectrochemical Cell

DSCC Efficiency:Lab >12% Production 8 - 10%

Director of the Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

B. O’Regan, M. Grätzel, Nature 1991, 353, 737−740

7

Page 8: Nanostructured Electromaterials for Energy Applications

M. Grätzel, Inorganic Chemistry, 2005, 44, 6841

8

Operation of the DSSC

Page 9: Nanostructured Electromaterials for Energy Applications

9

Cherian, S.; Wamser, C. C.J. Phys. Chem. B, 2000, 104, 3624.

TCPP

η = 3.0%

Zn-2 η = 4.8%Voc = 660 mV

Isc = 9.70 mA cm-2

FF = 0.75Electrolyte = 1376

Solvent = THF

Md. K. Nazeeruddin, R. Humphry-Baker, D. L. Officer, W. M. Campbell, A. K. Burrell, M. Grätzel, Langmuir, 2004, 20, 6514-6517.

GD2 η = 6.1%Voc = 685 mV

Isc = 13.3 mA cm-2

FF = 0.68Electrolyte = 1376

Solvent = THF

η = 7.1%Voc = 660 mV

Isc = 9.70 mA cm-2

FF = 0.75Electrolyte = 1376

Solvent = THF

Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K.; Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang, Q.; Graetzel, M.; Officer, D. L., J. Phys. Chem. C 2007, 111,11760.

GD1 η = 5.2%Voc = 566 mV

Isc = 13.5 mA cm-2

FF = 0.68Electrolyte = 1376

Solvent = THF

Wang, Q.; Campbell, W. M.; Bonfantini, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Graetzel, M., J. Phys. Chem. B 2005, 109, 15397.

Porphyrin dye improvement

Page 10: Nanostructured Electromaterials for Energy Applications

X-ray reflectometry analysis of porphyrins on TiO2

10

X-ray reflectometry results for porphyrins bound to dry amorphous ALD TiO2 coating on quartz.

M.J. Griffith, M. James, G. Triani, P. Wagner, D.L. Officer, G.G. Wallace Langmuir 2011, 27,12944.

Page 11: Nanostructured Electromaterials for Energy Applications

11

M.J. Griffith, M. James, G. Triani, P. Wagner, D.L. Officer, G.G. Wallace Langmuir 2011, 27,12944.

X-ray reflectometry analysis of porphyrins on TiO2

Page 12: Nanostructured Electromaterials for Energy Applications

12

Inactive porphyrin dye on TiO2 surface

Coexistence of Femtosecond- and Non-electron-injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the EfficiencyKenji Sunahara,†,‡ Akihiro Furube,*,†,‡ Ryuzi Katoh,‡ Shogo Mori,§ Matthew J. Griffith,|| Gordon G. Wallace,|| Pawel Wagner,|| David L. Officer, || and Attila J. Mozer ||

†Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan, ‡National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan, §Department of Fine Materials Engineering, Shinshu University, Nagano, 386-8567, Japan, and ||Intelligent Polymer Research Institute, ARC Centre for Excellence for Electromaterials Science, University of Wollongong, Wollongong 2522, Australia

CORRESPONDING AUTHOR FOOTNOTE *E-maill: [email protected]

J. Phys. Chem. C, 2011, 115 (44), pp 22084–22088

ABSTRACT We performed a detailed and quantitative spectroscopic study of the electron injection dynamics for porphyrin ....... By comparing the dynamics of two of the most studied porphyrins with those of a Ru-complex (N719), we have directly elucidated that the short-circuit current for the porphyrin sensitized solar cells is limited by the presence of excited dyes that are quenched in the sub-ns time range without competing with the electron injection process, even though both porphyrins shows faster injection processes within the ps time range than N719.

Page 13: Nanostructured Electromaterials for Energy Applications

Hydrogen

Using porphyrins tocreate an artificial

reaction centre

Page 14: Nanostructured Electromaterials for Energy Applications

14

Mimicking the reaction centre in photosynthesis

With Prof Les DuttonJohnson Research Foundation, Department of Biochemistry and Biophysics University of Pennsylvania. Philadelphia PA USA

ARC Artificial Photosynthesis Discovery project2012-2014

Page 15: Nanostructured Electromaterials for Energy Applications

Pigment Protein Binding Dynamics

NR174

Maquette-bound porphyrin

Free porphyrin

Page 16: Nanostructured Electromaterials for Energy Applications

Hydrogen

16

Making porphyrin/maquette dye

sensitised solar cells

/Maquette

Page 17: Nanostructured Electromaterials for Energy Applications

Device MeasurementsPorphyrin based devices using

2.6 µm TiO2 :

Porphyrin/maquette devices using 2.6 µm TiO2 :

Maquette/Porphyrin1 : 1.1

(At a concentration of 90.8 µM porphyrin)

Voc (mV) Jsc (mA/cm2) Fill Factor Efficiency (%) Porphyrin Quantity (nano-mol.cm-2.µm-1)

Sensitized Porphyrin 607.5 (± 16.6) 2.50 (± 0.16) 0.60 (± 0.03) 0.92 (± 0.05) 13.5 (± 0.5)

Porphyrin Salt 620 (± 16.4) 1.20 (± 0.12) 0.52 (± 0.04) 0.39 (± 0.07) 5.7 (± 1.2)*

Maquette-Porphyrin Ensemble

720 (± 8.7) 1.66 (± 0.15) 0.78 (±0.01) 0.93 (± 0.09) 3.5 (± 0.1)

DSSC Device Comparative Results-2.5 µm transparent TiO2 using iodide/triiodide redox electrolyte in acetonitrile (n=4, ± StdDev)

Page 18: Nanostructured Electromaterials for Energy Applications

Binds in seconds

17

Dimer porphyrins binding to maquettes

Nick Roach Rhys Mitchell

Page 19: Nanostructured Electromaterials for Energy Applications

18

Dimer porphyrins binding to maquettes

Page 20: Nanostructured Electromaterials for Energy Applications

Hydrogen

Using porphyrins tocreate nanostructures

Page 21: Nanostructured Electromaterials for Energy Applications

Using porphyrins to exfoliate graphene

Jenny Malig, Adam W. I. Stephenson, Pawel Wagner, Gordon G. Wallace, David L. Officer and Dirk M. Guldi, Chem. Commun., 2012, 48, 8745–8747

M = H or ZnR = CN or CO2H

Pawel Wagner

Page 22: Nanostructured Electromaterials for Energy Applications

Kiessling, D.; Costa, R. D.; Katsukis, G.; Malig, J.; Lodermeyer, F.; Feihl, S.; Roth, A.; Wibmer, L.; Kehrer, M.; Volland, M.; Wagner, P.; Wallace, G. G.; Officer, D. L.; Guldi, D. M., Novel nanographene/porphyrin hybrids - preparation, characterization, and application in solar energy conversion schemes. Chemical Science 2013, 4 (8), 3085-3098.

Using porphyrins to exfoliate graphene ....... and bind nanoparticles ……. and make solar cells

Page 23: Nanostructured Electromaterials for Energy Applications

23

Hydrogen

Using graphenes tocreate nanostructures

Page 24: Nanostructured Electromaterials for Energy Applications

24

GrapheneGraphite

?

Graphite to graphene

Page 25: Nanostructured Electromaterials for Energy Applications

Chemically converted graphene (CCG)

O O

O

O

OO

O

O O O

O

O

OO

O O

OO

CO2H CO2H CO2H

CO2H

CO2H

CO2H

CO2H

CO2H

CO2H

HO2C

HO2C

HO2C

HO2C

HO2C

HO2C

HO2C

HO2CCO2H

CO2H

OH

OH

OH

CO2H

HO

OH

Graphene oxide (GO)

COOH COOH COOH

COOH COOH COOH

COOH

HOOC

O

O

Graphene (CCG)

Page 26: Nanostructured Electromaterials for Energy Applications

26

Natural flake graphite Natural lump graphite

>99.9% graphite Synthetic graphite from petroleum coke

Graphite is not just graphite

Page 27: Nanostructured Electromaterials for Energy Applications

A Simple Route to Aqueous Graphene Dispersions

R. Jalili, S. H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, J. M. Razal, S. E. Moulton and G. G. Wallace, Material Horizons 1, 87-91, (2014).

Liquid crystalline graphene oxide (GO) Chemically converted graphene (CCG)

D. Li, M. B. Müller, S. Gilje, R. B. Kaner and G. G. Wallace, Nature Nanotechnology 2008, 3, 101-108.

Page 28: Nanostructured Electromaterials for Energy Applications

CCG aqueous and organic solvent dispersions

rCCG in DMF (0.5 mg/ml)

THF

Eth

yl a

lcoh

ol

Eth

yl a

ceta

te

Tolu

ene

rCCG dispersion diluted with different solvents

“Organic Dispersions of Highly Reduced Chemically Converted Graphene.” S. Gambhir, E. Murray, S. Sayyar, G. G. Wallace and D. L. Officer, Carbon 2014, online..

CCGaq

CCG in water (0.5 mg/ml)

Page 29: Nanostructured Electromaterials for Energy Applications

Costa, R. D.; Feihl, S.; Kahnt, A.; Gambhir, S.; Officer, D. L.; Wallace, G. G.; Lucio, M. I.; Herrero, M. A.; Vazquez, E.; Syrgiannis, Z.; Prato, M.; Guldi, D. M., Carbon Nanohorns as Integrative Materials for Efficient Dye-Sensitized Solar Cells. Advanced Materials (Weinheim, Germany) 2013, 25, (45), 6513-6518.

Carbon nanomaterials for dye sensitised solar cells

Different nanocarbons such as SWCNTs, graphene, SWCNHs, and their respective oxidized products have been used to fabricate novel nanocarbon/TiO2 photolectrodes for DSSCs

Upper: J−V characteristics for DSSCs prepared with the different nanocarbon/TiO2 photoelectrodes – reference (black solid), 0.5 wt% SWCNH (black dashed), 0.2 wt% SWCNHox (black dotted), 0.1 wt% graphene (dark grey solid), 0.5 wt% grapheneox (dark grey dashed), 0.1 wt% SWCNT (dark grey dotted), and 0.1 wt% SWCNTox (light grey solid). Lower: Incident monochromatic photo-to-current conversion efficiency (IPCE) of the different nanocarbon/TiO2 photoelectrodes – reference (black solid), 0.5 wt% SWCNH (black dashed), 0.2 wt% SWCNHox (black dotted), 0.1 wt% graphene (dark grey solid), 0.5 wt% grapheneox (dark grey dashed), 0.1 wt% SWCNT (dark grey dotted), and 0.1 wt% SWCNTox (light grey solid).

Ref.

graphene

Page 30: Nanostructured Electromaterials for Energy Applications

IPRI/ACES DLO 230813

Aqueous liquid crystalline graphene oxide (LC-GO)

Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route toward the Next Generation of Self-

Assembled Layer-by-Layer Multifunctional 3D Architectures

Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Simon E. Moulton, Joselito M. Razal and Gordon G. Wallace ACS Nano 2013, 7 (5), 3981–3990.

• Self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets (>20 um) in water and a wide range of organic solvents.

• Forms composites with superior mechanical performances.• Can be reduced by mild methods to graphene.• Can be wet-spun into fibres.

Expanded graphite

GraphiteLC-GOaq

CCG sheets from LC-GO

rapid heating oxidation reduction

solid state

SEMs of GO fibre

Page 31: Nanostructured Electromaterials for Energy Applications

31

Spraying coating

Ink-jet printing

Fiber spinning

Extrusion printing of 2D and 3D structures

Screen printing1 layer 2 layers 10 layers

Examples of The Fabrication of LC-GO

1. Jalili, R. et al. Scalable One-Step Wet-Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles. Adv. Funct. Mater. 2013, Ahead of Print.

2. Jalili, R. et al. Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route toward the Next Generation of Self-Assembled Layer-by-Layer Multifunctional 3D Architectures. ACS Nano 2013, 7, 3981-3990.

Page 32: Nanostructured Electromaterials for Energy Applications

Materials for CO2 reduction?

+

Doctor blade / reel-to-reel printing

Catalytic films / fibres for CO2

reduction

Page 33: Nanostructured Electromaterials for Energy Applications

Summary

Multifunctional molecular materials (reaction centres) such as porphyrins are essential for creating energy devices.

Also need nanostructured materials like graphene.

Controlled placement of the reaction centres will be the key to more efficient energy devices.

Page 34: Nanostructured Electromaterials for Energy Applications

34

Acknowledgements$ FUNDING $

Australian Research Council (Discovery and CoE)

Cooperative Research Centre for Polymers

Prof Keith GordonMs Penny WalshMr John EarlesMr Sam Lind

Ms Stasi Elliott

Prof Michael GrätzelDr Mohammad K. Nazeeruddin

Dr Robin Humphry-BakerDr Qing Wang

Dr Lukas Schmidt-MendeDr Henry Snaith

Shinshu UniversityDr Shogo Mori

Mr Kenji SunaharaMr Masanori Miyashita

AISTDr Ryuzi Katoh

Dr Akihiro FurubeDr Luchao Du

Cooperative Research Centre for Polymers

Prof Dermot DiamondDr Robert Byrne

Dr Michele ZanoniDr Larisa Florea

Mr Gerry TrianiDr Mike James

Dr Jeremy Yunes

Prof Gordon WallaceDr Attila Mozer

Dr Pawel WagnerDr Ying Dong

Dr Sanjeev GambhirDr Klaudia Wagner

Dr Jun ChenDr Amy BallantyneDr Robert Breukers

Dr Matt GriffithsMr Tim BuchhornMr Joseph GiorgioMr Nicholas RoachMr Rhys MitchellMr Chris Hobbs

Prof Les DuttonDr Chris Moser

Dr Goutham KodaliDr Bodhana Discher

Page 35: Nanostructured Electromaterials for Energy Applications

35

Thank you!