Nanoscale Advances

13
Nanoscale Advances Supplementary Information This journal is © The Royal Society of Chemistry 20xx J. Name ., 2013, 00, 1-3 | 1 Please do not adjust margins Please do not adjust margins Hydrochromic carbon dots as smart sensors for water sensing in organic solvents Anitha Senthamizhan* a , Despina Fragouli* a , Brabu Balusamy b , Bhushan Patil c , Milan Palei e , Stefania Sabella b , Tamer Uyar c,d and Athanassia Athanassiou* a a. Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy. [email protected], [email protected], [email protected], [email protected] b. Nanoregulatory Platform, PharmaChemistry, Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genova, Italy c. Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey d. Department of Fiber Science and Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA e. Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2019

Transcript of Nanoscale Advances

Page 1: Nanoscale Advances

Nanoscale Advances

Supplementary Information

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1

Please do not adjust margins

Please do not adjust margins

Hydrochromic carbon dots as smart sensors for water sensing in organic solvents

Anitha Senthamizhan*a, Despina Fragouli*a, Brabu Balusamyb, Bhushan Patilc, Milan Paleie, Stefania Sabellab, Tamer Uyarc,d

and Athanassia Athanassiou*a

a. Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy. [email protected], [email protected], [email protected], [email protected]

b. Nanoregulatory Platform, PharmaChemistry, Department of Drug Discovery and Development, Istituto Ital iano di Tecnologia, 16163 Genova, Italy c. Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey d. Department of Fiber Science and Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA e. Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy

Electronic Supplementary Material (ESI) for Nanoscale Advances.This journal is © The Royal Society of Chemistry 2019

Page 2: Nanoscale Advances

ARTICLE Journal Name

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Table of contents

Figure No

Description Page No

S1 Fourier-transform infrared spectra of the carbon dots 3

S2 XPS survey spectra of carbon dots 4

S3 XRD spectra of carbon dots 5

S4 Representative 2D excitation-emission contour map of carbon dots 6

S5 Biocompatibility studies of carbon dots 7

S6 Visual colorimetric changes in the emission of CD1 in THF upon addition of water 8

S7 Visual colorimetric changes in the emission of CD1 in THF upon addition of pure THF 8

S8 Selective water sensing performance of CD1/THF 9

S9 Time-resolved photoluminescence decay curves 9

S10 Excitation-emission contour maps of carbon dots in IPA and hydrated IPA 10

S11 Colorimetric sensing performance of hydrated Isopropyl alcohol 11

Supplementary Table

Supplementary Table 1: Comparison of the carbon dot based photoluminescent water sensor with other

works.

Supplementary Movie

Supplementary Movie 1: Demonstration of water sensing performance. An immediate distinguishable color change of CD1 is noticed upon exposure to water. Supplementary Movie 2: Demonstration of selective water sensing performance. The IPA, as an example

of polar protic solvent is introduced into CD1/THF (2 mL) to evaluate the selective sensing response

towards water. There is no significant change in the emission color of the CD1.

Page 3: Nanoscale Advances

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Please do not adjust margins

Fig. S1 Fourier-transform infrared spectra of the carbon dots.

Page 4: Nanoscale Advances

ARTICLE Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Fig. S2 XPS survey spectra of carbon dots (a) and the table (b) containing atomic concentration of present

elements (%).

Page 5: Nanoscale Advances

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5

Please do not adjust margins

Please do not adjust margins

Fig. S3 XRD spectra of carbon dots.

12 16 20 24 28 32 36 40

2 Theta (degree)

CD1

CD2

CD3

CD4

In

te

nsity(a

.u

.)

CD5

Page 6: Nanoscale Advances

ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Fig. S4 Representative 2D excitation-emission contour map of carbon dots (a) CD1 (b) CD2 (c) CD3 (d) CD4 and (e) CD5.

Page 7: Nanoscale Advances

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 7

Please do not adjust margins

Please do not adjust margins

Fig. S5 Biocompatibility studies of carbon dots. Cellular effects of carbon dots in Caco-2 human colon carcinoma cells using WST-1 cell viability and H2DCF-DA assay at 100 μg/mL (a&c) and 250 μg/mL (b&d). Error bars depict ± standard error of the mean for n=3.

(a) (b)

(c) (d)

Control CD1 CD2 CD3 CD4 CD5

0

20

40

60

80

100

120

140

160

Ce

ll V

ia

bility (%

)

24h 48h

Control CD1 CD2 CD3 CD4 CD5

0

20

40

60

80

100

120

140

160

Ce

ll V

ia

bility (%

)

24h 48h

Contr

ol

5m

M H

2O

2

CD

1

CD

2

CD

3

CD

4

CD

5

0

20

40

60

80

100

120

140

160

180

200

220

DC

F In

te

nsity (%

)

24h 48h

Contr

ol

5m

M H

2O

2

CD

1

CD

2

CD

3

CD

4

CD

5

0

20

40

60

80

100

120

140

160

180

200

220

DC

F In

te

nsity (%

)

24h 48h

Page 8: Nanoscale Advances

ARTICLE Journal Name

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Fig. S6 Visual colorimetric changes in the emission of CD1 in THF upon addition of water under UV light (λmax-365

nm).

Fig. S7 Visual colorimetric changes in the emission of CD1 in THF upon addition of pure THF under UV light (λmax-

365 nm).

Control

H2O

Page 9: Nanoscale Advances

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9

Please do not adjust margins

Please do not adjust margins

Fig. S8 Selective water sensing performance of CD1/THF. Photograph under UV light (λmax-365 nm) showing the

carbon dots in THF (2 mL) and subsequent addition of IPA (2 mL). The observed results indicated that there is no

significant chromatic transition.

Fig. S9 Time-resolved photoluminescence decay curves.

ControlIPA

0 10 20 30 40 50

10

1

10

2

10

3

10

4

Co

un

ts

Time(ns)

CD1/THF

CD1/THF/THF

CD1/THF/H2O

Page 10: Nanoscale Advances

ARTICLE Journal Name

10 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Fig. S10 Excitation-emission contour maps of carbon dots in (a) IPA and (b-f) hydrated IPA. (b) 0.2%, v/v

(c) 0.6%, v/v (d) 1.0%, v/v (e) 3.0%, v/v and (f) 5.0%, v/v.

400 420 440 460 480 500

300

320

340

360

380

Ex

cita

tio

n W

ave

le

ng

th

(n

m)

Emission Wavelength (nm)

0

1,563E6

3,125E6

4,688E6

6,250E6

7,813E6

9,375E6

1,094E7

1,250E7

1,406E7

1,563E7

1,719E7

1,875E7

400 420 440 460 480 500

300

320

340

360

380

Ex

cita

tio

n W

ave

le

ng

th

(n

m)

Emission Wavelength (nm)

0

1,550E6

3,100E6

4,650E6

6,200E6

7,750E6

9,300E6

1,085E7

1,240E7

1,395E7

1,550E7

1,705E7

1,860E7

400 420 440 460 480 500

300

320

340

360

380

Ex

cita

tio

n W

ave

le

ng

th

(n

m)

Emission Wavelength (nm)

0

1,567E6

3,133E6

4,700E6

6,267E6

7,833E6

9,400E6

1,097E7

1,253E7

1,410E7

1,567E7

1,723E7

1,880E7

400 420 440 460 480 500

300

320

340

360

380

Ex

cita

tio

n W

ave

le

ng

th

(n

m)

Emission Wavelength (nm)

0

1,563E6

3,125E6

4,688E6

6,250E6

7,813E6

9,375E6

1,094E7

1,250E7

1,406E7

1,563E7

1,719E7

1,875E7

400 420 440 460 480 500

300

320

340

360

380

Ex

cita

tio

n W

ave

le

ng

th

(n

m)

Emission Wavelength (nm)

0

1,208E6

2,417E6

3,625E6

4,833E6

6,042E6

7,250E6

8,458E6

9,667E6

1,088E7

1,208E7

1,329E7

1,450E7

400 420 440 460 480 500

300

320

340

360

380

Ex

cita

tio

n W

ave

le

ng

th

(n

m)

Emission Wavelength (nm)

0

1,563E6

3,125E6

4,688E6

6,250E6

7,813E6

9,375E6

1,094E7

1,250E7

1,406E7

1,563E7

1,719E7

1,875E7

(a) (b) (c)

(f)(e)(d)

Page 11: Nanoscale Advances

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 11

Please do not adjust margins

Please do not adjust margins

Fig. S11 Colorimetric sensing performance of hydrated Isopropyl alcohol. PL emission spectra (λex-330 nm) peak shift vs water content (0.2 % to 5.0% v/v).

Page 12: Nanoscale Advances

ARTICLE Journal Name

12 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Supplementary Table 1: Comparison of the carbon dot based photoluminescent water sensor with other works.

Material Change in the spectral position

Visual demonstration of photo/video

Type of solvent

Response time

Solvent specific respons

e

Ref

2D oxamato‐based manganese(II)‐copper(II) mixed‐metal–organic framework

Increased/Shift (586 to 544 nm)

No Toluene Greater than 60 minutes

No 1

Mg2+ metal–organic framework

Increased/Shift No THF, EtOH and ACN

1–2 minutes

No 2

4′-N, N-dimethylamino-4-methylacryloylamino chalcone (DMC)

Decreased No ethanol, acetone, and THF

less than 90s

No 3

Europium Coordination Compound (Eu(DAF)2(NO3)3)

Decreased No acetonitrile - No 4

Copper nanoclusters Decreased No DMSO, DMF, THF, Acetonitrile

20 min No 5

Oxoporphyrinogens Absorption Spectra

No THF - No 6

Tetraphenylethene (TPE) derivatives

Increased Yes THF and dioxane

- No 7

Coumarin-decorated Schiff base

Increased/Shift No DMSO - No 8

Flexible Indium(III) Metal–Organic Polyhedra Materials

Decreased Yes acetonitrile - No 9

Zn-MOF (metal–organic framework, Zn(hpi2cf)(DMF)(H2

O))

Shift/Increased yes THF, MeOH, Acetone, ACN and DMF

Instantly No 10

Carbon dots Shift/Decreased-Aprotic solvents Increased- Protic solvents

yes THF, IPA, ACN, Acetone and ButOH.

Instantly Yes Current work

Page 13: Nanoscale Advances

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 13

Please do not adjust margins

Please do not adjust margins

References:

1. J. Ferrando‐Soria, H. Khajavi, P. Serra‐Crespo, J. Gascon, F. Kapteijn, M. Julve, F. Lloret, J. Pasán, C.

Ruiz‐Pérez, Y. Journaux and E. Pardo, Adv. Mater., 2012, 24, 5625.

2. A. Douvali, A. C. Tsipis, S. V. Eliseeva, S. Petoud, G. S. Papaefstathiou, C. D. Malliakas, I. Papadas,

G. S. Armatas, I. Margiolaki, M. G. Kanatzidis, T. Lazarides and M. J. Manos, Angew. Chem. Int. Ed.,

2015, 54, 1651.

3. X. Y. Wang, C. G. Niu, L. Y. Hu, D. W. Huang, S. Q. Wu, L. Zhang, X. J. Wen and G. M. Zeng, Sens.

Actuators B Chem., 2017, 243, 1046.

4. L. Song, Y. W. Wu, W. X. Chai, Y. S. Tao, C. Jiang and Q. H. Wang, Eur. J. Inorg. Chem., 2015, 13,

2264.

5. Y. Huang, W. Liu, H. Feng, Y. Ye, C. Tang, H. Ao, M. Zhao, G. Chen, J. Chen and Z. Qian, Anal. Chem.,

2016, 88, 7429.

6. S. Ishihara, J. Labuta, T. Šikorský, J. V. Burda, N. Okamoto, H. Abe, K. Ariga and J. P. Hill, Chem.

Commun., 2012, 48, 3933.

7. Y. Zhang, D. Li, Y. Li and J. Yu, Chem. Sci., 2014, 5, 2710.

8. W. Y. Kim, H. Shi, H. S. Jung, D. Cho, P. Verwilst, J. Y. Lee and J. S. Kim, Chem. Commun., 2016, 52,

8675.

9. X. Du, R. Fan, L. Qiang, Y. Song, K. Xing, W. Chen, P. Wang and Y. Yang, Inorg. Chem., 2017, 56,

3429.

10. L. Chen, J. W. Ye, H. P. Wang, M. Pan, S. Y. Yin, Z. W. Wei, L. Y. Zhang, K. Wu, Y. N. Fan and C. Y. Su,

Nat. Commun., 2017, 8, 15985.