Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3...

31
2006.10.25. A. Matsuzawa, Tokyo Tech. 1 Nano-scale CMOS and Low Voltage Analog to Digital Converter Design Challenges Akira Matsuzawa Tokyo Institute of Technology

Transcript of Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3...

Page 1: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 1

Nano-scale CMOS and Low Voltage Analog to Digital Converter

Design Challenges

Akira Matsuzawa

Tokyo Institute of Technology

Page 2: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 2

Contents

1. Introduction

2. Effect of technology scaling on analog performance--- Performance analysis of pipeline ADC ---

3. Design challenges for ADC in nano-scale era

--- No use of Operational amplifier --

- Comparator controlled current source- Successive approximation ADC- Sub-ranging ADC

4. Summary

Page 3: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 3

Performance and applications

6 8 10 12 14 16

Resolution (bits)

Con

vers

ion

Rat

e (M

Hz)

0.1

1

10

100

1000

5

3050

300500

0.5

0.05

HDD/DVDGraphics

Audio

GeneralPurpose

DVC/DSC/Printer

Video/Communication

Servo

(µ-Computer)

Automobile

Meter

Pipeline ADC

Pipeline ADC is the major conversion architecture for communications and digital consumer products.

Page 4: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 4

Pipeline ADC

-

-+

+

Op amp

CMPDAC

-

-+

+

Op amp

CMPDAC

-

-+

+

Op amp

Sample & Hold 1st stage 2nd stage

Cf

Cs

Cf

Cs

1st stage

2nd Stage

Sample Amp. Sample Amp.

Sample Amp. Sample Amp.

Transfer characteristics

Hold Sample Amplify

-Vref

+Vref

-Vref

+Vref

0 1

X2

-Vref

+Vref

-Vref

+Vref

0 1 0 1

X2

1st Stage 2nd Stage

Folding I/O characteristics makes higher resolution along with pipeline stages.

Page 5: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 5

Speed and power

High Speed ADC[Sampling Freq. VS Power]

1

10

100

1000

10000

1 10 100 1000 10000

Sampling Freq.[MSps]

Pow

er[

mW

]

12Bit(Paper)

10Bit(Paper)

12Bit Products

10Bit Products.

JSSC,ISSCC,VLSI,CICC,ESSCC

& Products

(≧10Bit,≧

10MSps)1995-2006

MHzmWbit /3.0:10

MHzmWbit /1:12

10b12b

Conversion speed has saturated at 200 MHz Smaller mW/MHz is needed for low power operation.0.3mW/MHz for 10bit and 1mW/MHz for 12bit are the bottom lines.

200MHz

Page 6: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 6

Effect of technology scalingon analog performance

Technology scalingand performance of pipeline ADC

Page 7: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 7

Operating voltage trend

0

1

2

3

4

10

100

2002 2004 2006 2008 2010 2012 2014 2016

Ope

ratin

g vo

ltage

(V)

Des

ign

rule

(nm

)

Design RuleAnalog High

Analog Low

Digital Low (Low leak)

Digital High

ITRS 2003

ITRS 2001

About 1V operation

Operating voltage of scaled device will keep about 1V

Page 8: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 8

Operational amplifier for ADC

Vin+vout-vout+

2Veff

Vs=Vdd-4Veff

2Veff

Vin-Gain Boostamp.

Vdd

Output signal range

Pipeline ADC needs high performance amplifier.The output signal range will be reduced along with voltage lowering.

Vs=Vdd-0.7V

Vs=0.5V @Vdd=1.2VVs=0.3V @Vdd=1.0V

Page 9: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 9

Requirements for operational amplifier

-

-+

+

Op amp

Cf

Cs

Vin

Vn

Vn

Amplify

Sampling

βGCC

GG

f

perror

121−≈⎟

⎟⎠

⎞⎜⎜⎝

⎛+−≈

⎟⎟⎠

⎞⎜⎜⎝

⎛+

f

p

CC

2

106)( +> NdBG

N:ADC resolutionM:Stage resolution1MN2G

1+−≤

β

for 1.5b pipeline ADC

DC gain

pisf

f

CCCC

++=β

( )pisf

pisfoLpoL CCC

CCCCCC

++

+++=

3fcN

C2gGBW

L

mclose_

⋅>=

π

β

Closed loop gain-bandwidth

Higher resolution requires higher open loop gain.Higher conversion frequency requires higher closed loop GBW.

Page 10: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 10

kT/C noise

R

CL

Larger SNR requires larger capacitance and larger signal swing.Low signal swing increases required capacitance.

CL

vout

φ

vn

0.1 1 10 10050

60

70

80

90

10095.918

51.938

SNRC 1 2, C,( )

SNRC 2 2, C,( )

SNRC 3 2, C,( )

SNRC 5 2, C,( )

1000.1 C

14bit

12bit

10bit

0.1 1 10 100

VFS=5VVFS=3V

VFS=2V

VFS=1V

n=2

SN

R (d

B)

Capacitance (pF)

( ) CkT

2d

CR11kTR4v 2

2n =

+= ∫ π

ωω

CnkTv2n = n: configuration coefficient

⎟⎟⎠

⎞⎜⎜⎝

⎛=

nkTCVdBSNR FS

8log10)(

2

Page 11: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 11

Ids-GBW特性

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

0.0E+00 5.0E-04 1.0E-03 1.5E-03 2.0E-03

Ids[A]

GB

W[H

z]

90nm(CL=100fF) 90nm(CL=200fF)

0.25μm(CL=100fF) 0.25μm(CL=200fF)

GBW: 10GHz

GBW: 2GHz

Conversion freq. : 1GHz

Conversion freq. : 200MHz

Effect of technology scaling

90nm

0.25um

Gain bandwidth of OpAmp increases along with technology scaling.However, can we increase every needed performances for ADCs?

Page 12: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 12

M5

Vbp2

Vbp1

VoutnVoutp

Vbn1

Vbn2

Vdd

VinpVinn

Vbp1

Technology scaling for analog

M5

Vbp2

Vbp1

VoutnVoutp

Vbn1

Vbn2

Vdd

VinpVinn

Vbp1

elVsig arg:

SignalCap.

ParasiticCap.

ParasiticCap.

ParasiticCap. Parasitic

Cap.

ParasiticCap.

smallVsig :

SignalCap.

ParasiticCap.

Technologyscaling

Technology scaling can reduce parasitic capacitances.However signal capacitance will increase to keep the same SNR atlower voltage operation.

Parasitic capacitance smallerOperating voltage lowerSignal swing lower

Signal capacitance largerVoltage gain lower

Page 13: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 13

Performance model for pipeline ADC

Cf

Cs Cpi gm Cpo COLRL2

1

1

p

+

OpAmpofpoleSecondceresisOutputRcecapaciLoadC

cecapaciparaciticputputinputCCloopfeedbackforcecapaciSignalCC

stageinputofcecTranscondug

p

L

oL

popi

fs

m

:tan:tan:

tan&:,

tan:,tan:

βπ L

mclose C

gGBW2_ =

pisf

f

CCCC

++=β

( )pisf

pisfoLpoL CCC

CCCCCC

++

+++=

2fs

oL

CCC

+= oLfso CCCC ===

OpAmp

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

=

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

=

o

dspi

o

dspo

o

dspieffo

ds

o

pi

o

po

o

pio

mclose

CI

CI

CIVC

I

CC

CC

CCC

gGBWααα

112

1

112

12_

ππ

A. Matsuzawa, “Analog IC Technologies for Future Wireless Systems,” IEICE, Tan on Electronics, Vol. E89-C, No.4, pp. 446-454, April, 2006.

We have developed the performance model for pipeline ADC that can treat technology scaling.

Page 14: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 14

Scaling and analog device and circuit parameters

μds2

effox

IVCL2W =

(b)Cpi_N, Cpi_P,Cpo[fF/mA],ωp2_N,ωp2_P[GHz]

(a)WN,WP[μm/mA],VA_N, VA_P[V]

D

G

S

B

gdC dbC

gsC sbC

dbC

dsI

Veff=0.175V

DR DR

DR

L[μm]0.1 0.2 0.3 0.4 0.51

10

100

1000

Cgd

Cgs

Cap

. [fF

/mA

],fT[

GH

z]W

[μm

/mA

]

fT

W

2/1 S S: Scaling factor

Gate width and capacitances decrease with technology scaling.

Page 15: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 15

Determination of signal capacitance

90nm 0.13μm 0.18μm 0.25μm 0.35μm

Vdd 1.2V 1.5V 1.8V 2.5V 3.3V

Vsig_pp 1.0V 1.6V 2.2V 3.6V 5.2V

2

19 21066.1 ⎟⎟⎠

⎞⎜⎜⎝

⎛×≥ −

sig

N

o VC

DR[μm]

0.001

0.01

0.1

1

10

100

1000

0.1 0.50.05

Co[p

F]

8bit

10bit

12bit

14bit

Vin+vout-vout

+

2Veff

Vdd-4Veff

2Veff

Vin-

Vdd

Gain Boostamp.

Output signal range

Larger resolution requires larger signal capacitance.Furthermore, Voltage lowering increases signal capacitance more.

Page 16: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 16

10

100

1000

10000

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

Performance curve

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

=

o

pi

o

po

o

pio

mclose

CC

CC

CCC

gGBW112

12_π

①Co≫Cpo,Cpi

)(・π

dseffo

dsclose I�

VCIGBW ∝≈

31

_

dsopodsipieff

dsm I�CI�C

VIg α=α== ,,2

②Cpi<Co<Cpo

) (α

・π

tConsVC

GBWoeffo

close tan311

_ +≈

③Co<Cpo、Co<Cpi

)(αα

・π dsdsoieffo

close I�

IVCGBW 1

311

_ ∝+

③②fFCo 50=

Performance exhibits convex curve.There is the peak conversion frequency and the optimum current. Current increase results in increase of parasitic capacitances and decrease of conversion frequency in the higher current region.

Page 17: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 17

1

10

100

1000

10000

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

8 bit

0.13μm 90nm

0.13um attains highest conversion frequency in a low current region.However 90nm is over striding 0.13um along with increase of the current.

Page 18: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 18

0.25μm

1

10

100

1000

10000

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

10 bit

0.35μm 0.18μm 0.13μm 90nm

The best design rule depends on operating current.0.35um attains highest conversion frequency in low operating current region!

Page 19: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 19

0.1

1

10

100

1000

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

12 bit

0.35μm 0.25μm 0.18μm

Relaxed design rule is suitable for wider current range.

Page 20: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 20

14 bit

0.01

0.1

1

10

100

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

Scaled CMOS is not suitable for higher resolution ADC.

Page 21: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 21

Performance summary

12bit

1

10

100

1000

10000

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

8bit1

10

100

1000

10000

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

10bit

0.1

1

10

100

1000

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

12bit0.01

0.1

1

10

100

0.01 0.1 1 10

Ids[mA]

fc[M

Hz]

90nm 0.13μm 0.18μm 0.25μm 0.35μm

14bit

Scaled CMOS is effective for just low resolution ADC.Scaled CMOS is not effective for high resolution ADC.

Page 22: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 22

Voltage gain

dsmi rgG ⋅=ds

Ads

eff

dsm I

VrVIg == ,2

Aeff

Ai VVVG 102

≈=

LVoperation

LV operation

VA decreases with scaling and operating voltage lowering.High gain can not be expected.

NMOS PMOS

Page 23: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 23

Voltage gain of operational amplifier

Vin+vout-vout+Vin-

Gain Boostamp.

VVV effds 2.0≈≈

dBVVGeff

Ai 20

2.022

=≈=20dB

40dB 20dB

Total gain is 80dB @max

Voltage gain of OpAmp for scaled CMOS and LV operation is 80dB at most.

Less than 10 bit ADC can be designed with scaled and low voltage CMOS.

Page 24: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 24

Design challenges for ADCin nano-scale era

--- No use of Operational amplifier --

- Comparator controlled current source- Successive approximation ADC- Sub-ranging ADC

Page 25: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 25

Isink

R R

Isink

R R

effoxj

ksin

oxj

m

VLWC32WC2

I

LWC32WC2

gGBW⎟⎠⎞

⎜⎝⎛ +

=⎟⎠⎞

⎜⎝⎛ +

=ππ

2eff

oxksin V

LW

2CI μ

= LCox

κ=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

kC

32L2

VGBW

j2

eff

π

μ

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

Rel

ativ

e ba

ndw

idth

Feature size ( )mμ

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

Rel

ativ

e ba

ndw

idth

Feature size ( )mμFeature size ( )mμ

Design rule and Speed in Comparator

Gain bandwidth (=Speed) is inversely proportional to the L2 (channel length).Technology scaling is still effective to increase the comparator speed and to reduce operating current.Furthermore, low voltage operation, such as 0.5V, is available.

Page 26: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 26

Comparator controlled current source

Vx is reaching the virtual ground voltage asymptotically

Conventional OpAmp

Vx is reaching the virtual ground voltage with constant rate

Comparator controlledcurrent source

T. Sepke, J. K. Fiorenza, C. G. Sodini, P. Holloway, and H. Lee, “Comparator-Based Switched-Capacitor Circuits For Scaled CMOS Technologies,” IEEE, ISSCC 2006, Dig. of Tech. Papers, pp. 574-575. Feb. 2006.

Comparator controlled current source can realize the virtual ground.

Now challenge for not use of OpAmp in ADC design has started.

Page 27: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 27

Realistic comparator controlled current source

+

_

C1

C2

AGND

Vx E1

E2

I1

I2

Vo

Vx

Vo

Vo(n-1)Vo(n)

Vxo

AGND

E1 E2

I2<< I1

Time delay (Vx Vo) causes voltage offset. Small inverse current source has been introduced. The offset voltage can be reduced and does not effect the conversion linearity.

T. Sepke, J. K. Fiorenza, C. G. Sodini, P. Holloway, and H. Lee, “Comparator-Based Switched-Capacitor Circuits For Scaled CMOS Technologies,” IEEE, ISSCC 2006, Dig. of Tech. Papers, pp. 574-575. Feb. 2006.

10b, 8MHz ADC has been developed.Pd=2.5mW. Lowest Pd/MHz

Page 28: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 28

Successive approximation ADC

C C2

C4

C8

C16

C16

Vin Vref

C C2C2

C4C4

C8C8

C16C16

C16C16

Vin Vref

Binary weighted Capacitor array Comparator

D. Draxelmayr, “A 6b 600MHz 10mW ADC Array in Digital 90nm CMOS,” IEEE, ISSCC 2004, Dig. of Tech. Papers, pp. 264-265, Feb. 2004.

SA-ADC

Eight interleaved SA-ADCs with 90nm CMOSattain 600MHz operation.

Successive approximation ADC

Successive approximation ADC has been used long time as a low power and low speed ADC. It doesn’t require OpAmp but capacitor array and comparator. Thus this architecture looks suitable for scaled and low voltage CMOS.

Now challenge for renewal of this conventional architecture has started.

Page 29: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 29

Improvement of SA-ADC

Tracking Phase

Tracking Phase

MSB MSB-1 MSB-2 LSB

MSB MSB-1 MSB-2 LSB

Synchronous Conversion Phase

Asynchronous Conversion Phase

Sampling Instants

Sampling Instants

To comparatorVcm

Cu

Cu

Cu

Cu Cu

Cu Cu Cu

Cu

VinVcmVrefpVrefn

LSB MSB αβ

+= 1radix

βα+=β 1

S. W. M. Chen and R. W. Brodersen, “A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13um CMOS,” IEEE, ISSCC 2006, Dig. of Tech. Papers, pp. 574-575. Feb. 2006.

6bit 600MHz 5.3mW ADC has been realized with 0.13um CMOS

Capacitor ladder with some radix number

Asynchronous clock increases conversion frequency.Use of proper radix reduces capacitance.

Asynchronous clock

Page 30: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 30

Sub-ranging ADC

Coarse ADC(CADC)

Fine ADC(FADC)

Vin

Vr

Vr

63

2

7

6.6

12

7]Y. Shimizu, S. Murayama, K. Kudoh, H. Yatsuda, A. Ogawa, “ A 30mw 12b 40MS/s Subranging ADC with a High-Gain Offset-Canceling Positive-Feedback Amplifier in 90nm Digital CMOS,” IEEE, ISSCC 2006, Dig. of Tech. Papers, pp. 222-225. Feb. 2006.

Use of positive feedback technique has realized low offset voltage.

Sub-ranging ADC also doesn't require OpAmp and suitable for LV operation.However it requires low offset voltage comparators.

Positive Feedback

CKT

Pd/MHz =0.75mW/MHz which is lowest value!!

Technology revival has been found.

Page 31: Nano-scale CMOS and Low Voltage Analog to Digital ... · 2006.10.25. A. Matsuzawa, Tokyo Tech. 3 Performance and applications 6 8 10 12 14 16 Resolution (bits) Conversion Rate (MHz)

2006.10.25. A. Matsuzawa, Tokyo Tech. 31

Summary• Technology scaling is effective for increasing analog performance if not so

much higher SNR is required.

• Technology scaling is not effective for increasing analog performance if higher SNR is required, and sometimes degrades it.

• Increase of signal capacitance to keep the SNR high at low voltage operation is essential serious issue for use of scaled CMOS.

• Furthermore, Gain lowering of OpAmp due to technology scaling and voltage lowering becomes serious issues.

• Design challenges for ADC has been started.

• No use of OpAmp is a common idea.

• Technology revivals have been found and the performance has beenimproved. Further improvement will be expected in future.