NAIMA method

21
1 APPLICATION OF NAIMA-MA FOR FAST HIGH THROUGHPUT AND QUANTITATIVE GMO DETECTION Dany Morisset , David Dobnik, Tina Likar and Kristina Gruden Department of Biotechnology and Systems Biology National Institute of Biology Ljubljana, Slovenia [email protected]

description

Presentation at the International Biotechnology Society conference in Dalian, China. October 2008

Transcript of NAIMA method

Page 1: NAIMA method

1

APPLICATION OF NAIMA-MA FOR FAST HIGH THROUGHPUT AND

QUANTITATIVE GMO DETECTION

Dany Morisset, David Dobnik, Tina Likar and Kristina GrudenDepartment of Biotechnology and Systems Biology

National Institute of BiologyLjubljana, Slovenia

[email protected]

Page 2: NAIMA method

2

– mimics retroviral replication (1)

– avian myeloblastosis virus RT/DNA polymerase, T7 RNA polymerase and RNase H

– T7 promoter-labelled target-specific primer– diagnostics applications (clinical, veterinarian,

environmental…) (2)

(1). Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350(6313):91-2

(2). bioMérieux is NASBA patent holder

Nucleic Acid Sequence-Based Amplification (NASBA)

Page 3: NAIMA method

3WP5 & & meeting11-12 MayLjubljana

ssRNA/ss cDNA

second specific primer

Reverse Transcription

RNAse H activity

T7-specific primer

100-1000 copies

NASBA principle

Primer extension

Transcription

T7-RNA polymerase promoter sequence + specific sequence

Second target specific sequence

3’

5’ RNA

3’ c DNA (-)

Reverse Transcription

5’

5’ ds cDNA3’ RNA pol

Primer extension

5’3’

3’5’

ss DNA 5’

5’

3’

RNA (-)3’

3’

3’

3’

3’

3’

3’

3’

3’

Page 4: NAIMA method

4

– Goal: • Multiplexing and integration with microarrays• High throughput identification and quantification of GMOs

NAsba Integrated Multiplex Amplification (NAIMA)

NASBA for GMO detection

Page 5: NAIMA method

5

Denaturation, specific “tailed” primers

Primer extension (no cycling)

NAIMA multiplex template synthesis

ds DNA

Host DNA Host DNAGene TermProm

5’3’

5’3’

T7-RNA polymerase promoter sequence + universal sequence

Second universal sequence

Target specific sequence

5’3’

5’3’

5’3’

5’3’

5’3’

5’3’

5’3’

Page 6: NAIMA method

6WP5 & & meeting11-12 MayLjubljana

ssRNA/ssDNA

second universal primer

Reverse Transcription

RNAse H activities

T7-universal primer

RNA (-)

100-1000 copies

NAIMA universal amplification

Primer extension

3’

5’

Transcription

ss DNA

T7-RNA polymerase promoter sequence + universal sequence

Second universal sequence

3’5’

3’5’

3’

3’

3’

3’

3’

3’

3’

RNA pol

5’3’

ds DNA

5’3’

Page 7: NAIMA method

7

Optimisation of technology

• Singleplex qualitative and quantitative detection: IVR, 35S, tNOS, Mon810• Specific• High amplification (> 1.106 in singleplex)• 25 min amplification sufficient• Linear• Sensitive (< 20 copies)

• Linear range > 3Log10

Page 8: NAIMA method

8

Triplex : sensitivity and linearity

• Screening (IVR*P35S*tNOS) and Mon810 (IVR*P35S*Mon810)• Assessed on serial dilutions

– Same linear range as for singleplex (>3 log10)

– Same sensitivity as for singleplex (down to 2 copies)

– Same amplification profile as for singleplex

Mon863 ctl IVR R2 = 0.9868

IVR R2 = 0.9353

ctl 35S R2 = 0.9984

35S R2 = 0.9029

tNOS R2 = 0.9548

ctl tNOS R2 = 0.9992

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

1 10 100 1000 10000

copy nb

Ct

ctl IVR

ctl 35S

ctl tNOS

IVR

35S

tNOS

Page 9: NAIMA method

9

Triplex : trueness

• Two triplexes (screening and Mon810)• Feed and food samples with different GM contents assayed

– Easily detects from 0.1% to 100%– Samples quantified in parallel using qPCR and NAIMA

Results are the average of two independent experiments

Triplex platform

35S NAIMA 35S qPCR Cv% Mon810 NAIMA Mon810 qPCR Cv%

Mon810(IVR x 35S x Mon810)

20.0 ± 8.18.4 ± 6.07.4 ± 2.91.5 ± 0.70.9 ± 0.60.3 ± 0.2

25.7 ± 8.011.5 ± 3.25.1 ± 0.63.9 ± 1.12.6 ± 0.80.6 ± 0.2

15.519.232.644.145.735.6

11.5 ± 55.0 ±2.12.6 ± 0.81.4 ± 0.60.3 ± 0.20.14 ± 0.11

8.7 ± 1.05.0 ± 0.44.1 ± 0.41.2 ± 0.50.7 ± 0.30.13 ± 0.04

23.10.225.216.037.41.5

35S NAIMA 35S qPCR tNOS NAIMA tNOS qPCR

Screening(IVR x 35S x tNOS)

17.1 ± 5.912.6 ± 4.74.0 ± 1.80.9 ± 0.50.5 ± 0.2ND

13.4 ± 4.310.1 ± 1.76.2 ± 1.91.0 ± 0.40.4 ± 0.10.04*

20.017.724.46.121.0ND

10.9 ± 5.99.6 ± 2.93.5 ± 0.60.6 ± 0.20.13 ± 0.130.00*

9.2 ± 3.49.9 ± 1.03.4 ± 0.80.6 ± 0.20.3 ± 0.10.02*

12.92.33.72.433.0NR

Page 10: NAIMA method

10

Integration of NAIMA to detection on microarrays

• Direct labelling of NAIMA products with dendrimers (15 oyster dyes/molecule)• Signal amplification• 60 min NAIMA

Page 11: NAIMA method

11

Customized EAT dual-chip

Sense and anti-sense probes (cRNA and cDNA detection)

S. Hamels, S. Leimanis, M. Mazzara, G. Bellocchi, N. Foti, W. Moens, J. Remacle and G. Van den Eede. (2007) Microarray Method for the Screening of EU Approved GMOs by Identification of their Genetic Elements. EUR 22935 EN-Joint Research Centre. ISBN 978-92-7906989-5

Each spot is present in triplicate

Det Ctl Cy5 Det Ctl Cy3 Det Ctl Cy5 Det Ctl Cy3 Det Ctl Cy5 Det Ctl Cy3 Det Ctl Cy5

Hyb Ctl negative Det Ctl Det Ctl Cy3 Hyb Ctl Det Ctl Cy3 Det Ctl Cy5 Hyb Ctl Det Ctl Cy3

MON spec MON spec_B negative hyb ctl MON spec MON spec_B Det Ctl Cy3 MON spec MON spec_B

P35S tNOS Invertase_B P35S tNOS Invertase_B Det Ctl Cy5 P35S tNOS Invertase_B

P35S_B tNOS_B Invertase P35S_B tNOS_B Invertase Det Ctl Cy3 P35S_B tNOS_B Invertase

negative Det Ctl Hyb Ctl negative hyb ctl Hyb Ctl Det Ctl Cy5 Hyb Ctl

Page 12: NAIMA method

12

On-chip detection: specificity

• Mon810 100% (w/w) DNA tested (Mon810 triplex)• 200 starting copies of IVR, 100 starting copies of P35S and Mon810: NAIMA

amplified, labelled, hybridized • Specific for probes• ss cDNA and cRNA detected Det Ctl Cy5 Det Ctl Cy3 Det Ctl Cy5 Det Ctl Cy3 Det Ctl Cy5 Det Ctl Cy3 Det Ctl Cy5

Hyb Ctl negative Det Ctl Det Ctl Cy3 Hyb Ctl Det Ctl Cy3 Det Ctl Cy5 Hyb Ctl Det Ctl Cy3

MON spec MON spec_B negative hyb ctl MON spec MON spec_B Det Ctl Cy3 MON spec MON spec_B

P35S tNOS Invertase_B P35S tNOS Invertase_B Det Ctl Cy5 P35S tNOS Invertase_B

P35S_B tNOS_B Invertase P35S_B tNOS_B Invertase Det Ctl Cy3 P35S_B tNOS_B Invertase

negative Det Ctl Hyb Ctl negative hyb ctl Hyb Ctl Det Ctl Cy5 Hyb Ctl

Page 13: NAIMA method

13

• Mon863 10% (w/w) DNA tested (screening triplex)• 4 dilutions of DNA: NAIMA-amplified, labelled and hybridized

dilutions IVR copies tNOS copies P35S copies

4x 2690 134 269

16x 672 33 67

64x 168 8 17

256x 42 2 4

256x

High sensitivity

On-chip detection: sensitivity

Page 14: NAIMA method

14

• Mon863 10% (w/w) DNA tested (screening triplex)• 4 dilutions of DNA NASBA-amplified, labelled and hybridized• Perfect correlation between starting copy number and net intensity• Broad linear range

Quantitative measurements on microarray after NAIMA amplification

On-chip detection: quantification

IVR

R2 = 0.9991

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500 3000

copy number

Net

in

ten

sity

P35S

R2 = 0.9934

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

copy numberN

et i

nte

nsi

ty

tNOS

R2 = 0.9973

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100 120 140

copy number

Net

in

ten

sity

Measures in triplicate for each amplicon

Page 15: NAIMA method

15

– Fast amplification (25min)– Multiplex (tailed primers)– Quantitative (fit with 0.9% threshold, wide linear range)– Sensitivity of the amplification (detection traces)– Difficult matrices (processed food, traces, high DNA

background)– Application with microarray (no further purification,

identification/quantification) – high throughput– Target and signal amplification– Short hybridization (1H)– Sensitivity of microarray/dendrimer (< 20 copies)

Conclusion

Page 16: NAIMA method

16

Improvements

• 6-plex under development • 4 screening elements (P35S, tNOS, NPTII, BAR)• 1 endogene (IVR)• 1 event-specific (MON810)

• Preliminary results:– IVR (100), P35 (6.8), NPTII (3.6), tNOS (3.6), Mon810

(2.7), PAT (0.5)– Good sensitivity: < 10 copies– Linearity: ok

• Next step: quantification, complex samples

IVR R2 = 0.9684

NPtII R2 = 0.9764

Mon 810 R2 = 0.8999

P35S R2 = 0.9471 tNOS R2 = 0.9455

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 1 10 100 1000 10000

IVR

Mon810

NPtII

P35S

PAT

tNOS

Log. (IVR)

Log. (NPtII)

Log. (Mon810)

Log. (P35S)

Log. (tNOS)

Page 17: NAIMA method

17

Improvements

• 6-plex under development • Higher multiplexing is aimed• New elements to be added: event vs screening• Quantification on microarray• Simplified procedure (isothermal, silver staining)• Pre-validation: technology transfer to 2nd lab

Page 18: NAIMA method

18

Additional information

Literature:• Morisset, D. et al. (2008). Alternative DNA amplification

methods to PCR and their application in GMO detection: a review. Eur. Food Res.Techn. 227:1287-97

• Morisset, D. et al. (2008)., NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs. Nucl. Acids Res. (online).

18

Page 19: NAIMA method

19

David Dobnik Tina Likar

Dr. Kristina Gruden Pr. Jana Žel

European Commission’s Sixth Framework Program throughthe integrated project Co-extra (contract no. 7158).

Acknowledgments

Page 20: NAIMA method

20

Page 21: NAIMA method

21

Time and cost (6 screening targets)

• qPCR• 6 samples/ 0.5 working day (96 well-plate)• 40 euros/ sample

• NAIMA-MA (25 min NAIMA-60min MA)• 24 samples/ 0.5 working day• 6-plex: 34 euros/sample