Murakami, M. et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

15
Murakami, M. et al J. AM. CHEM. 2004, 126, 14764 Miyasaka Lab Tomohiro Kunishi

description

Dynamics and Mechanisms of the Multiphoton Gated Photochromic Reaction of Diarylethene Derivatives. Murakami, M. et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi. Contents. Photochromism Motivation of the present paper Result & Discussion Conclusion. Photochromism. - PowerPoint PPT Presentation

Transcript of Murakami, M. et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Page 1: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Murakami, M. et al J. AM. CHEM. 2004, 126, 14764

Miyasaka Lab

Tomohiro Kunishi

Page 2: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Contents

•Photochromism

•Motivation of the present paper

•Result & Discussion

•Conclusion

Page 3: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Photochromism

Photoinduced reversible transformation in a chemical species between two forms without changes of molecular weight.

AbsorptionRefractive indicesOxidation potential etc

Quick change of physical properties between two isomers

UV light

Vis. lightS S

F2

F2 F2

S S

F2

F2 F2

Page 4: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Motivation

(5) Non-destructive read-out capability with the high sensitivityneeds another conditions arising from the change of the some outer environments that can act as “gate” of the reaction.

(3) Rapid response   = (4) high sensitivity = (2) low fatigue

Excited state reaction generally occurs in competition with various processes in a finite lifetime.

Gated-Reaction Control via Multiphoton Laser Pulse Excitation

(1) Thermal stability of both isomers (2)  Low fatigue (3)  Rapid response (4)  High sensitivity(5) Non-destructive readout capability

Optical and Photonic Device

Page 5: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Photochromic Reaction

Open-form

300 400 500 600 7000

1

2

3

4

Ext

inct

ion

Co

effic

ien

t

(1

04 / M

-1cm

-1)

Wavelength / nm

Open-form

Closed-form

Reaction yield from closed-form to open-form is only 1.3% under steady-state light irradiation.

< 360 nm450 ~ 700 nm

Closed-form

Reaction yield: 反応収率

Page 6: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Transient absorption spectra of PT1(c) in n-hexane excited with a 15-ps 532-nm laser pulse.

400 500 600 700 800 900 1000-0.6

-0.4

-0.2

0.0

0.2

0.4

100 ps 10 ps Grnd. state

Abs

orba

nce

(Nor

mal

ized

)

Wavelength / nm

Cycloreversion reaction completed within 100 ps. Perfect recovery of the closed form by UV light after ps 532 nm laser pulse.

400 600 800 1000

-26 ps

80 ps60 ps50 ps

30 ps20 ps10 ps0 ps

100 ps

40 ps

-10 ps

1 ns

Ab

sorb

an

ce (

0.2

/div

.)

Wavelength / nm

Transient absorption: 過渡吸収

Page 7: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Time profile of trasient absorbance

0 50 100 150

0.00

0.05

0.10

0.15

0.20

0 50 100 150-0.6-0.5-0.4-0.3-0.2-0.10.0

(a) 710nm

(b) 580nm

Abso

rbance

Time/ps

0 20 40 60 80-1.5x10-2

-1.0x10-2

-5.0x10-3

0.0

0 20 40 60 80

-4.0x10-2

-2.0x10-2

0.0

0 20 40 60 80

0.0

5.0x10-3

1.0x10-2

1.5x10-2

(c)

(b)

Ab

sorb

an

ce

Time / ps

(a)

Ex. at 540 nm /Mon. at 580 nm

Ex. at 580 nm / Mon. at 620 nm

Ex. at 580 nm / Mon. at 680 nm

10 ps decay / Reaction yield : 1-2 %.No excitation wavelength effect.

Time constant is almost the same.But, remaining absorption is large.

< femtosecond laser > < picosecond laser >

Page 8: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Apparent Reaction Yield

ΦO

0= k0/(kn+ko)

10ps=1/(kn+ko)

hv

Closed isomer Open isomer

S1

kn

S0

ko

Drastic enhancement of the cycloreversion reaction yield.1.3 % (steady-state irradiation) 40 % ( ps 532 nm laser excitation)

Page 9: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Excitation intensity dependence : conversion efficiency at 160 ps after the excitation with a 15-ps 532-nm laser pulse.

0.01 0.1 1

10-2

10-1

100

Co

nve

rsio

n E

ffic

ien

cy

Excitation Intensity (mJ / mm2)

Conversion efficiency-Abs590nm / Abs590nm

Two-photon process is responsible forthe efficient bond breakage.

Slope~2

Conversion efficiency is quadratically in proportion with the exitation intensity

Conversion efficiency: 変換効率

Page 10: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Sn

S0

hv

hv

S1

S0

hv

hv

(1) Simultaneous two-photon absorption process

(2) Stepwise two-photon absorption process

Re-absorption of intermediate speciesThe competition of absorption of lightbetween the ground state molecule and the intermediate species.Effective in the case where the number of total photon is large.

I : Peak Intensity   (photon / cm2 sec) δ : 2-photon absorption cross section

Ng : the number of the ground-state moleculesNe : the number of the excited state molecules

2NgINe

Two-photon Absorption Processes

Simultaneous two-photon absorption process : 同時二光子吸収Stepwise two-photon absorption process : 逐次二光子吸収

Page 11: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Comparison of Picosecond and Femtosecond Lasers

Peak Energy Almost the sameTotal photon number PS > FSPeak Energy / Area Size ( ) FS > PS

LASER 

Wavelength

Pulse Duration(fwhm)

Output/ Pulse

Peak Energy

Peak Energy/ Area Size

PS  532 nm 15 ps0.5 1.0 mJ

6.7107 W(1 mJ)

7 109

W / cm2

FS540 610 nm

150 fs 5 15 J6.7107 W(10 J)

7 1010

W / cm2

Ratio 

Com-parable 1 / 100 1 / 100 1 10

However 1-2 % (reaction yield : FS)

2NgINe I

Page 12: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Two-photon Absorption Processes

Sn

S0

hv

hv

S1

S0

hv

hv

(1) Simultaneous two-photon absorption process

(2) Stepwise two-photon absorption process

Re-absorption of intermediate speciesThe competition of absorption of lightbetween the ground state molecule and the intermediate species.Effective in the case where the number of total photon is large.

I : Peak Intensity   (photon / cm2 sec) δ : 2-photon absorption cross section

Ng : the number of the ground-state moleculesNe : the number of the excited state molecules

2NgINe

Simultaneous two-photon absorption process : 同時二光子吸収Stepwise two-photon absorption process : 逐次二光子吸収

Page 13: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Excitation Intensity Dependence ( ps 532 nm laser )

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

At 20 ps

S1

S0 (bleaching)

Excitation Intensity (mJ / mm2)

Ab

sorb

an

ce

400 500 600 700 800 900 1000-0.6

-0.4

-0.2

0.0

0.2

0.4

Ab

sorb

an

ce

Wavelengh/nm

Increase in the S1 population with an increase in the excitation intensity. Further increase of the exc. Intensity decreases the S1 state population, while increasing the So state bleaching. S0

h

S1

Sn

Page 14: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Conclusion

Sn

S1

S0closed form open form

major

minor

0.01 0.1 1

10-2

10-1

100

Co

nve

rsio

n E

ffic

ien

cy

Excitation Intensity (mJ / mm2)

Total photon number PS > FS ↓Stepwise abosorption process PS > FS ↓ Reaction yield PS > FS

Gated-Reaction Control  via   Multiphoton Laser Pulse Excitation

•Optical memory

Slope~2

Page 15: Murakami, M.  et al J. AM. CHEM. 2004 , 126, 14764 Miyasaka Lab Tomohiro Kunishi

Summary

•Picosecond pulsed excitation of the closed-isomer of thediarylethene derivatives led to the drastic enhancement of thecycloreversion reaction.

•this enhancement is attributable to the production of the higher excited state with a large reaction yield of the cycloreversion (50%)Attained via a successive two-photon process.

•A new approach for one-color light control of the gated photochromic system, which can be utilized for an erasable memory system with nondestructive readout capability.