Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative...

32
Muon Spin Spectroscopy Using the Positive Muon to Probe Matter Paul W. Percival Department of Chemistry Simon Fraser University and TRIUMF

Transcript of Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative...

Page 1: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Muon Spin SpectroscopyUsing the Positive Muon to Probe Matter

Paul W. Percival

Department of ChemistrySimon Fraser University

and TRIUMF

Page 2: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

2

NUSC 341, November 2005

Muon and Muonium Properties

Negative muon µ− a heavy electron (mass = 207 me)

τ = 2.2 µs in vacuum

less in matter because of nuclear capture

spin I = ½

Muonium Mu = µ+e− a light hydrogen atom Mu+ = µ+

Ionization Energy = 13.54 eV H: 13.60 eV

Bohr Radius = 0.532 Ǻ H: 0.529 Ǻ

Positive muon µ+ a light proton (mass = 0.11 mp)

τ = 2.2 µs in vacuum and matter

spin I = ½

Page 3: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

3

NUSC 341, November 2005

The Periodic Table Chemistry Department Quilt

http://www.sfu.ca/chemistry/news/pt_quilt/index.htm

Page 4: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

4

NUSC 341, November 2005

The Simplest Atom

Page 5: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

5

NUSC 341, November 2005

Muonium a light isotope of hydrogen

Mu ≡ µ+ e−

reduced mass of Mu = 0.995 mr(H)

ionization potential = 13.539 eV

Bohr radius = 0.532 Å

µ+

e−

The properties of a single electron atom are determined by the reduced mass

r N e e

r e

1 1 1 1

i.e .

m m m m

m m

= + ≈

Page 6: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

6

NUSC 341, November 2005

Pions Decay to Give Muons

At TRIUMF, pions are produced by bombardment of a Be or C production target with 500 MeV protons. We take the positive pions, which decay to positive muons:

µπ µ ν+ +→ + In the pion rest frame:

Momentum is conserved:

Spin is conserved:

ν µ← →!

p pµ ν

µ νσ σ

=−

=−

""# ""#

""# ""#

Spin and momentum are related through helicity: 1

.ph hp

σψ ψ

σ⋅= =±# ## #

For the neutrino, h = -1, i.e. the spin and momentum are anti-parallel.

Therefore, muons are produced with σ and p anti-parallel.

p pν

ν

µ

µσσ

←→ ← →!

τ = 26 ns

Page 7: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

7

NUSC 341, November 2005

Muon Beams are Spin Polarized

There are two commonly used types of muon beam:

Surface Muon Beams collect and transport muons which are created from the decay of pions at or near the surface of the pion production target.

select these muons to get these spins:

beam line

Decay Muon Beams collect muons from pions which decay in flight.

In the π rest frame only backward and forward muons are transported.

In the laboratory frame, both momentum bites travel in the forward direction.

The forward (momentum) muons (p~180 MeV/c) have backward spin; the backward muons (p~80 MeV/c) have forward spin.

Page 8: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

8

NUSC 341, November 2005

Muon Decay

ee 2.2 sµµ ν ν τ µ+ +→ + + =

The 3 particle decay results in a spectrum of positron energies.

The spatial distribution of positrons is asymmetric and depends on the muon spin polarization.

Consider the decay pattern which results in the maximum positron energy:

The e+ is emitted in the direction of the muon spin at the moment of decay. More generally,

Energy

N

1max 2

52.8 MeV

E mµ==

e+νµ

νe

σeσν

[ ]( , ) 1 ( )cosdN E C D EdE d

θθ= +

Ωθ

Page 9: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

9

NUSC 341, November 2005

The Muon Lifetime Experiment

/0 bace kgroundtN N τ−= +

ee 2.2 sµµ ν ν τ µ+ +→ + + =

µ+

beamS

start stopCLOCK

M F

B

P

e+

time

N

lifetime histogram

0

Page 10: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

10

NUSC 341, November 2005

µ+

beamS

start stopCLOCK

M F

B

P

e+

time

N

µSR histogram

Muon Spin Rotation, µSR

( ) ( )[ ]/0 e 1 cos backgroundtN N aP t tτ ω φ−= + + +

Apply a magnetic field perpendicular to the initial spin direction.

Page 11: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

11

NUSC 341, November 2005

The µSR Histogram

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5 6

time / µs

muo

n as

ymm

etry

0

200

400

600

800

0 1 2 3 4 5 6

time / µs

coun

t

( ) ( )[ ]/0 e 1 costN aP t t Bτ ω φ− + + +

Subtract the constant background and divide out the exponential decay

to get the muon asymmetry, which represents the time dependence of the muon spin polarization.

( ) ( )cosaP t tω φ+

Page 12: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

12

NUSC 341, November 2005

µSR: Muon Spectroscopy

spin polarized muon beam

muons are implanted in the sample

muons decay: µ+ → e+ + νµ + νe τ = 2.2 µs

angular distribution of e+ has maximum in muon spin direction

precession of muon spins in transverse magnetic field

equivalent to free induction decay in pulsed NMR or ESR

Muon Spin Rotation

Page 13: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

13

NUSC 341, November 2005

Muonium in supercritical water

Percival, Brodovitch, Ghandi et al., Phys. Chem. Chem. Phys. 1 (1999) 4999

400°C, 245 bar

0.0 0.5 1.0 1.5 2.0 2.5 3.0time / µs

-0.2

-0.1

0.0

0.1

0.2

Asym

met

ry

8 G

Page 14: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

14

NUSC 341, November 2005

Muonium in supercritical water

-0.15

0.00

0.15

0.00 0.50 1.00 1.50 2.00 2.50 3.00

time / µs

Muo

n A

sym

met

ry400°C, 245 bar, 8 G

AMue-λt

Diamagnetic signal subtracted

Page 15: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

15

NUSC 341, November 2005

Muonium in supercritical water at 196 G

400°C

245 bar

0.00 0.05 0.10 0.15 0.20

time / µs

Muo

n A

sym

met

ry

200 220 240 260 280 300 320 340

Frequency / MHz

Four

ier P

ower

Page 16: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

16

NUSC 341, November 2005

Energy levels of a two spin-½ system

Breit-Rabi diagram

(αβ − βα)/√2

0.0 1.0 2.0 3.0

Magnetic Field / Hyperfine Constant

RelativeEnergy

(αβ + βα)/√2

αα

ββ

αα

ββ

αβ

βα

e µ

Page 17: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

17

NUSC 341, November 2005

Muon spin precession in D2O crystal at 227 K

38 G

0.0 0.5 1.0 1.5 2.0

time /µs

Muo

n A

sym

met

ry

The high frequency precession is due to triplet (F=1) muonium.

The low frequency is due to muons in diamagnetic environments, such as MuOD and MuOD2

+

Page 18: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

18

NUSC 341, November 2005

Muonium precession frequencies in low magnetic field

Magnetic Field

Ene

rgy

1

2

3

ν12

ν23

Magnetic Field

1

2

3

ν12

ν23

isotropic hyperfine case axial anisotropy

Page 19: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

19

NUSC 341, November 2005

Muonium diffuses along the c-axis channels of ice-Ih

Mu

side view view along c channel

Page 20: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

20

NUSC 341, November 2005

µSR: Muon spectroscopic methods

Common features: spin polarized muon beam muons are implanted in the sample muons decay: µ+ → e+ + νµ + νε τ = 2.2 µs angular distribution of e+ has maximum in muon spin direction

Muon Spin Rotation µSR (TF-µSR) precession of muon spins in transverse magnetic field equivalent to free induction decay in pulsed NMR or ESR

Muon Spin Resonance RF-µSR muon spin polarization along magnetic field transitions induced by rf field as in conventional NMR

Muon Level Crossing Resonance µLCR (ALCR) mixing of spin levels causes avoided level crossing polarization is lost at magnetic fields where level crossing occurs

Page 21: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

21

NUSC 341, November 2005

RF Transitions in Muonium at Low Magnetic Field

Magnetic Field

Ene

rgy

1

2

3

νrf

νrf 2νrf

Page 22: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

22

NUSC 341, November 2005

RFµSR Spectrum of Mu@C60 in C60 Powder

120 130 140 150 160 170

Magnetic Field / G

Page 23: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

23

NUSC 341, November 2005

Endohedral Muonium Mu@C60

Muonium in a universe of its own

Page 24: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

24

NUSC 341, November 2005

Muoniated free radicals

e.g. cyclohexadienyl

µSR:precession frequencies ⇒ muon hyperfine couplingµLCR:resonance fields ⇒ other nuclear hyperfine couplings

hyperfine couplings ⇒ distribution of unpaired electron spin

Temperature dependence of hyperfine couplings⇒ intramolecular motion

R4R3

R2 CMu

R1

C

H Mu

0.33

-0.10

0.48

0.33

-0.10

Page 25: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

25

NUSC 341, November 2005

0 50 100 150 200 250 300 350 400Frequency / MHz

Four

ier P

ower

Transverse field muon spin rotation of radicals

Aµ = νR2 νR1

νR1

νR2

νD

Magnetic Field

Ene

rgy

Page 26: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

26

NUSC 341, November 2005

Fourier power µSR spectrum of tert-butyl

1 M tert-Butanol 280°C 250 bar 11.5 kG

0 50 100 150 200 250 300 350 400Frequency / MHz

Four

ier P

ower Aµ = 256 MHz CH3

CH3

CH2Mu

Page 27: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

27

NUSC 341, November 2005

Avoided Muon Level Crossing Resonance

µ Xres

µ X

12 γ γ

A AB

−≈

6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2

Magnetic Field / kG

A+ A

Magnetic Field

Ene

rgy

Xµe ,, ↑↓↑

Xµe ,, ↓↑↑

Page 28: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

28

NUSC 341, November 2005

tert-Butyl radical in water

10.0 10.5 11.0 11.5

Field / kG

A+ -A

-

CH3

CH3

CH2Mu

200°C

250 bar

Page 29: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

29

NUSC 341, November 2005

Hyperfine constants are used to map unpaired spin in radicals

Mu13C60 Avoided Level Crossing Resonance

15.010.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5

Magnetic Field /kG

Mu

3014

5.42.0

3.31.5

1.4

% Unpaired Spin Density

Percival, Addison-Jones, Brodovitch, Ji, et al., Chem. Phys. Lett., 245 (1995) 90

Page 30: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

30

NUSC 341, November 2005

H atoms and free radicals in liquids

H is the simplest atom⇒ fundamental chemistry

H is a constituent of water, hydrocarbons, carbohydrates⇒ essential chemistry

Chemically speaking, Mu ≡ H

because it is similar: tracer, spin label

because it is different : isotope effects

We study Mu as a substitute for H

Page 31: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

31

NUSC 341, November 2005

Muonium Chemistry areas of application

Muonium Mu as probe of local environment(caged) Fixed cage: fullerenes, silsesquioxanes

partial: icetransient: water

Kinetics How fast does it go?in gases: reaction dynamicsliquids: solvent effects; diffusion vs. activation control

Structure Where does it end up?(needs e-spin) Free radicals: unpaired spin distribution

Mechanism How does it get there?Identification of radical productsTransfer of muon polarization

Dynamics Nature is floppy!intramolecular Temperature dependence of hyperfine constantsintermolecular LCR lineshape analysis

Page 32: Muon Spin Spectroscopy - SFU.capercival/NUSC341_muSR.pdf · Muon and Muonium Properties Negative muon µ− a heavy electron (mass = 207 m e) τ = 2.2 µs in vacuum – – less in

Paul Percival

32

NUSC 341, November 2005

Further Reading

http://www.sfu.ca/chemistry/news/pt_quilt/index.htm

http://musr.org/cmms.php

http://musr.org/intro/musr/muSRBrochure.pdf