Multiple-input multiple-output (MIMO) communication systems

60
Advanced Modulation and C oding : MIMO Communicatio 1 Multiple-input multiple-output (MIMO) communication systems

description

Multiple-input multiple-output (MIMO) communication systems. System model. N T transmit antennas. N R receive antennas. k : time index (k = 1, ..., K). (coded) data symbols a n (k), E[|a n (k)| 2 ] = E s. System model. (m = 1, ..., N R ; k = 1, ..., K). - PowerPoint PPT Presentation

Transcript of Multiple-input multiple-output (MIMO) communication systems

Page 1: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

1

Multiple-input multiple-output (MIMO)communication systems

Page 2: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

2

System model

trans-mitter

receiver

#1

#NT

#1

#NR

#n #minfo-bits

info-bits

NT transmit antennas NR receive antennas

)k(a

)k(a

TN

1

)k(r

)k(r

RN

1

k : time index (k = 1, ..., K)

(coded) data symbols an(k), E[|an(k)|2] = Es

Page 3: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

3

System model

)k(w)k(ah)k(r m

N

1nnn,mm

T

)k(

)k(w

)k(w

)k(

)k(a

)k(a

hh

hh

)k(

)k(r

)k(r

RTTRR

T

R N

1

N

1

N,N1,N

N,11,1

N

1

waHr

wm(k) : complex i.i.d. AWGN, E[|wm(k)|2] = N0

hm,n : complex Gaussian zero-mean i.i.d. channel gains (Rayleigh fading), E[|hm,n|2] = 1

(m = 1, ..., NR; k = 1, ..., K)

r(k) = Ha(k) + w(k)

W

www

A

aaaH

R

rrr ))K(,),k(,),1(())K(,),k(,),1(())K(,),k(,),1((

R = HA + W

Page 4: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

4

System model

Rb : information bitrateRs : symbol rate per transmit antennaEb : energy per infobitEs : energy per symbol

bits coded#

infobits#rMIMO (code rate)

Es = EbrMIMOlog2(M)

)M(logrN

RR

2MIMOT

bs

(per antenna)

info-bits

encoder

rMIMO

codedbits

NTK coded symbols

mapper S/P

#1

#NT

#n

M-pointconstellation

RbMIMO

b

r

R

)M(logr

R

2MIMO

b

1r0 MIMO

Rb = RsNTrMIMOlog2(M)

Page 5: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

5

System model

BRF Rs (necessary condition toavoid ISI between successive symbols)

Spectrum transmitted bandpass signal

f

BRF BRF0

Bandwidth efficiency :

All NT transmitted signals are simultaneously in the same frequency interval

Rb/Rs = NTrMIMOlog2(M) (bit/s/Hz)

Page 6: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

6

ML detection

)]()[(Tr||||

)k(ah)k(r),|(plnN

H2

N

1m

K

1k

2N

1nnn,mm0

R T

AHRAHRAHR

HAR

Log-likelihood function ln(p(R |A, H) :

2||||minargˆ AHRAA

(minimization over all symbol matrices that obey the encoding rule)

XH denotes Hermitian transpose (= complex conjugate transpose (X*)T)

][Tr][Tr|x||||| HH

j,i

2j,i

2 XXXXX

i

i,im][Tr M

Frobenius norm of X :

Trace of square matrix M :

Properties : Tr[PQ] = Tr[QP], Tr[M] = Tr[MT]

ML detection :

Page 7: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

7

Bit error rate (BER)

info-bits

encoder

rMIMO

codedbits

NTK coded symbols

mapper S/P

#1

#NT

#n

M-pointconstellation

ed transmittinfobits #

errors]infobit #[EBER

symbol matrix A represents NTKrMIMOlog2(M) infobits

MIMO2T

,

)0()i((i,0)info

r)M(logKN

],ˆPr[N

BER)i()0(

AA

AAAA(i,0)infoN : # infobits in which A(i) and A(i)

are different

Page 8: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

8

Bit error rate (BER)

)(PEP],|ˆPr[ )0,i()0()i( HHAAAA

MIMOTMIMO2T rKNr)M(logKN)0( M2]Pr[ AA

],|ˆPr[E]|ˆPr[ )0()0()0()i( HAAAAAAAA H

PEP(i,0)(H) = Pr[||R - HA(i)||2 < ||R - HA(0)||2| A = A(0), H]

PEP(i,0)(H) : pairwise error probability, conditioned on H

(averaging over statistics of H)

]Pr[]|ˆPr[],ˆPr[ )0()0()i()0()i( AAAAAAAAAA

PEP(i,0) = EH[PEP(i,0)(H)] : pairwise error probability, averaged over H

Page 9: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

9

Bit error rate (BER)

0

2)0,i(

0

2)0,i()0,i(

N4

||||exp

2

1

N2

||||Q)(PEP

ΔHΔHH

R

TR

T

NN

1n 0

)0,i(n

N

0

H)0,i()0,i(

N)0,i()0,i(

N41

2

1

N4

)(det

2

1)(PEPEPEP

ΔΔ

IHH

Define error matrix : (i,0) = A(0) - A(i)

set of eigenvalues of NTxNT matrix (i,0)((i,0))H

(these eigenvalues are real-valued non-negative)}N,...,0n,{ T

)0,i(n

MIMO2T

0i

)0,i((i,0)info

)0(

r)M(logKN

PEPN]Pr[

BER 0

A

AA

Averaging over Rayleigh fading channel statistics :

Page 10: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

10

To be further considered

Single-input single-output (SISO) systems : NT = NR = 1

Single-input multiple-output (SIMO) systems : NT = 1, NR 1

Multiple-input multiple-output (MIMO) systems : NT 1, NR 1

•Spatial multiplexing : ML detection, ZF detection•Space-time coding : trellis coding, delay diversity, block coding

Page 11: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

11

Single-input single-output (SISO) systems

Page 12: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

12

SISO : observation model

info-bits

Rb

encoder

rSISO

coded bits

coded symbols

mapper

SISO

b

r

R

)M(logr

RR

2SISO

bs

Bandwidth efficiency : Rb/Rs = rSISOlog2(M) (bit/s/Hz)

Observation model : r(k) = ha(k) + w(k) k = 1, ..., K

Page 13: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

13

SISO : ML detection

k

2

)}k(a{k

2

)}k(a{|)k(a)k(u|minarg|)k(ah)k(r|minarg)}k(a{

h

)k(r

|h|

h)k(r)k(u 2

*

xr(k) u(k)

2

*

|h|

h

h

1

ML detector looks for codeword that is closest (in Euclidean distance) to {u(k)}

In general : decoding complexity exponential in K (trellis codes, convolutional codes : complexity linear in K by using Viterbi algorithm)

# codewords = SISOSISO2 rKr)M(logK M2

Page 14: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

14

SISO : PEP computation

0

2)0,i(,E

2)0,i(

N4

d|h|exp

2

1)h(PEP

1

0

2)0,i(,E)0,i(

N4

d1

2

1PEP

K

1k

2)i()0(2)0,i(,E |)k(a)k(a|d

0

2)0,i(,E)0,i(

N4

dexp

2

1PEP

Conditional PEP :

squared Euclidean distance between codewords {a(0)(k)} and {a(i)(k)}

Average PEP, AWGN (|h| = 1) :

Average PEP, Rayleigh fading :

decreases exponentially with Eb/N0

inversely proportional

to Eb/N0

b2SISOs2

)0,i(,E E)M(logrEd

(occasionally, |h| becomes very small large PEP)

Page 15: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

15

SISO : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R

AWGNAWGN boundRayleigh fadingRayleigh fading bound

SISOBPSK, uncoded

BER fading channel >> BER AWGN channel

Page 16: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

16

SISO : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-5 0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R

AWGN uncoded

AWGN Ext. Hamming (8,4)

AWGN Shannon limit

Rayleigh fading uncoded

Rayleigh fading, ext. Hamming (8,4)

Rayleigh fading, Shannon limit

SISOBPSK, coded

coding gain on fading channel << coding gain on AWGN channel

Page 17: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

17

Single-input multiple-output (SIMO) systems

Page 18: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

18

SIMO : observation model

Same transmitter as for SISO; NR antennas at receiver

info-bits

Rb

encoder

rSIMO

coded bits

coded symbols

mapper

SIMO

b

r

R

)M(logr

RR

2SIMO

bs

Bandwidth efficiency : Rb/Rs = rSIMOlog2(M) (bit/s/Hz)

Observation model : rm(k) = hma(k) + wm(k) m = 1, ..., NR; k = 1, ..., K

Page 19: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

19

SIMO : ML detection

k

2

)}k(a{k

N

1m

2mm

)}k(a{|)k(a)k(u|minarg|)k(ah)k(r|minarg)}k(a{

R

R

R

N

1m

2m

N

1mm

*m

|h|

)k(rh)k(u

xr1(k)

u(k)

*mh

x

x

rm(k)

)k(rRN

*1h

*NR

h

x

RN

1m

2m|h|

1ML detector looks for codeword that is closest to {u(k)}

Same decoding complexity as for SISO

Page 20: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

20

SIMO : PEP computation

0

avg22

)0,i(,ER)0,i(

N4

)|h(|dNexp

2

1)(PEP h

RN

0

2)0,i(,E)0,i(

N4

d1

2

1PEP

0

2)0,i(,ER)i,0(

N4

dNexp

2

1PEP

Conditional PEP :

PEP, AWGN (|hm| = 1) :

PEP, Rayleigh fading :

decreases exponentially with Eb/N0

inversely proportional

to (Eb/N0)^NR

total received energy per symbol increases by factor NR as compared to SISO same PEP as with SISO, but with Eb replaced by NREb

(“array gain” of 10log(NR) dB)

- “array gain” of 10log(NR) dB - additional “diversity gain” (diversity order NR) : probability that (|h|2)avg is small, decreases with NR

PEP is smaller than in SISO setup with Eb replaced by NREb

RN

1m

2m

Ravg

2 |h|N

1)|h(|

Page 21: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

21

SISO : statistical properties of <|h|2>

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

x

pd

f

N_R = 1

N_R = 2

N_R = 3

N_R = 5

N_R = 10

Probability density function of <|h|2>

Page 22: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

22

SISO : statistical properties of <|h|2>

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

x

Pr[

<|h

|2>

< x

]

N_R = 1

N_R = 2

N_R = 3

N_R = 5

N_R = 10

Cumulative distribution function function of <|h|2>

Page 23: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

23

SIMO : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Eb/N0 (dB)

BE

R

N_R =1N_R =2N_R =3N_R = 4

SIMO AWGNUncoded BPSK

AWGN channel : array gain of 10log(NR) dB

Page 24: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

24

SIMO : numerical results

fading channel : array gain + diversity gain

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R

SISOarray gain onlyboundcorrect

SIMO, N_R = 2uncoded BPSK array

gain

diversity gain

Page 25: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

25

SIMO : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R

SISOarray gain onlyboundcorrect

SIMO, N_R = 3uncoded BPSK

fading channel : array gain + diversity gain

Page 26: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

26

SIMO : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R

SISO

array gain only

bound

correct

SIMO, N_R = 4uncoded BPSK

fading channel : array gain + diversity gain

Page 27: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

27

SIMO : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R

SISO uncodeduncodedShannon limitExt. Hamming (8,4)

SIMO, N_R = 2BPSK

fading channel : coding gain increases with NR

Page 28: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

28

SIMO : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R

SISO uncodeduncodedShannon limitExt. Hamming (8,4)

SIMO, N_R = 3BPSK

fading channel : coding gain increases with NR

Page 29: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

29

SIMO : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R

SISO uncoded

uncoded

Shannon limit

Ext. Hamming (8,4)

SIMO, N_R = 4BPSK

fading channel : coding gain increases with NR

Page 30: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

30

Multiple-input multiple-output (MIMO) systems

Page 31: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

31

MIMO : observation model

Bandwidth efficiency : Rb/Rs = NTrMIMOlog2(M) (bit/s/Hz)

)k(w)k(ah)k(r m

N

1nnn,mm

T

(m = 1, ..., NR; k = 1, ..., K)

R = HA + W at any receive antenna, symbols from different transmit antennas interfere

)M(logrN

RR

2MIMOT

bs

(per antenna)

info-bits

encoder

rMIMO

codedbits

NTK coded symbols

mapper S/P

#1

#NT

#n

M-pointconstellation

RbMIMO

b

r

R

)M(logr

R

2MIMO

b

Page 32: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

32

MIMO : ML detection

2||||minargˆ AHRAA

ML detector :

detector complexity in general increases exponentially with NTrMIMO and K

# different symbol matrices A =

KrNK)M(logrN MIMOT2MIMOT M2

Page 33: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

33

MIMO : PEP computation

RT

R

T

NN

1n 0

)0,i(n

N

0

H)0,i()0,i(

N)0,i(

N41

2

1

N4det

2

1PEP

I

PEP, Rayleigh fading :

# nonzero eigenvalues equals rank((i,0)), with 1 rank((i,0)) NT

PEP(i,0) inversely proportional to (Eb/N0)^(NRrank((i,0)))

PEPs that dominate BER are those for which (i,0) = A(0)-A(i) has minimum rank.

)rank(minNorderdiversity (i,0)

)0,i(R Δ

Page 34: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

34

MIMO : spatial multiplexing

Page 35: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

35

Spatial multiplexing

info-bits

encoder

r

mapper

rN

R

T

b

)M(logrN

RR

2T

bs

#1

T

b

N

R

encoder

r

mapper

rN

R

T

b

#NT

T

b

N

R

S/P

Rb

MIMO encoder : rMIMO = r(per antenna)

Aim : to increase bandwidth efficiency by a factor NT as compared to SISO/SIMO

TN

T1

Ta

a

A

))N(a,),k(a,),1(a( nnnTn a codeword transmitted

by antenna #n

codewords transmitted by different antennas are statistically independent

Bandwidth efficiency : Rb/Rs = NTrlog2(M)

Page 36: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

36

Spatial multiplexing :ML detection

TT N

1nn

Hn

N

1'n,n'n

Hn'n,n

H

2

Re2)()(minarg

||||minargˆ

uaaaHH

AHRA

A

AML detector :

As HHH is nondiagonal, codewords on different rows must be detected jointly instead of individually

ML detector complexity increases exponentially with NT

as compared to SISO/SIMO

# different symbol matrices A =KrNK)M(logrN T2T M2

(un)T : n-th row of HHR

Page 37: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

37

Spatial multiplexing : PEP computation

1)(rankmin )0,i(

0i

dominating PEPs are inversely proportional to (Eb/N0)^NR

diversity order NR (same as for SIMO)

rank((i,0)) = 1 when all rows of (i,0) are proportional to a common row vector T = ((1), ..., (k), ..., (K)).

Example : (i,0) has only one nonzero row; this corresponds to a detection error in only one row of A

RN

n

2n

0

2)0,i( ||

N4

||1

2

1PEP

δ

(i,0) nonzero rank((i,0)) 1

Denoting the n-th row of a rank-1 error matrix (i,0) by n T, the bound on the corresponding PEP is

Page 38: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

38

Spatial multiplexing : zero-forcing detection

Complexity of ML detection is exponential in NT

Simpler sub-optimum detection : zero-forcing (ZF) detection

r(k) = Ha(k) + w(k)

z(k) = (HHH)-1HHr(k) = a(k) + n(k) n(k) = (HHH)-1HHw(k)

rank(H) = NT (HHH)-1 exists

E[n(k)nH(k)] = N0(HHH)-1 : ni(k) and nj(k) correlated when ij

z(k) : no interference between symbols from different transmit antennas

linear combination of received antenna signals rm(k) to eliminatemutual interference between symbols an(k) from differenttransmit antennas and to minimize resulting noise variance

Condition for ZF solution to exist : rank(H) = NT (this requires NR NT)

Page 39: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

39

Spatial multiplexing : zero-forcing detection

Sequences {an(k)} are detected independently instead of jointly, ignoring the correlation of the noise on different outputs :

(HHH)-1HH

r1(k)

rm(k)

)k(rRN

z1(k)

zn(k)

)k(zTN

detector

detector

detector

)}k(a{ 1

)}k(a{ n

)}k(a{TN

k

2nn

)k(an |)k(a)k(z|minarg)}k(a{

n

Complexity of ZF detector is linear (instead of exponential) in NT

Performance penalty : diversity equals NR-NT+1 (instead of NT)

Page 40: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

40

Spatial multiplexing : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R (

bo

un

d)

N_T = 1, N_R = 1

N_T = 5, N_R = 1

N_T = 1, N_R = 2

N_T = 5, N_R = 2

N_T = 1, N_R = 3

N_T = 5, N_R = 3

N_T = 1, N_R = 4

N_T = 5, N_R = 4

Spatial multiplexinguncoded BPSKML detection

ML detection : penalty w.r.t. SIMO decreases with increasing NR

Page 41: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

41

Spatial multiplexing : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R(N_R, N_T) = (1,1), (2,2), (3,3) ,...

(N_R, N_T) = (2,1), (3,2), (4,3) ,...

(N_R, N_T) = (3,1), (4,2), (5,3) ,...

(N_R, N_T) = (4,1), (5,2), (6,3) ,...

Spatial multiplexinguncoded BPSKZF detection

ZF detection : same BER as SIMO with NR-NT+1 receive antennas

Page 42: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

42

MIMO : space-time coding

Page 43: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

43

Space-time coding

in fo -b its

R b

encoder

rM IM O

codedb its

coded sym bols

m apper

MIMO

b

r

R

)M(logr

R

2MIMO

b

S /P

#1

#N T

#n

)M(logrN

RR

2MIMOT

bs

(per an tenna)Aim : to achieve higher diversity order than with SIMO any (i,0) must have rank larger than 1 (max. rank is NT, max. diversity order is NTNR) coded symbols must be distributed over different transmit antennas and different symbol intervals (“space-time” coding)

Property : rMIMO 1/NT is necessary condition to have rank NT for all (i,0)

at max. diversity, Rb/Rs log2(M) Rb/Rs limited by bandwidth efficiency of uncoded SIMO/SISO

Page 44: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

44

Three classes of space-time coding :

•space-time trellis codes (STTrC)•delay diversity•space-time block codes (STBC)

Page 45: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

45

STTrC : trellis representation

)K(,),k(,),1( aaaA

)k(b,),k(b)k( L1 b L input bits at beginning of k-th symbol interval

S(k) : state at beginning of k-th symbol interval

)k(a,),k(a,),k(a)k(TNn1

T a

state transitions : (S(k+1), a(k)) determined by (S(k), b(k))

trellis diagram :(L=1)

k k+1

S(k)

S(k+1)

b(k), a(k)

0

1

2

3

2L branches leaving from each state

2L branches entering each state

Page 46: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

46

STTrC : bandwidth efficiency

ML decoding by means of Viterbi algorithm :

decoding complexity linear (instead of exponential) in K

but still exponential in NT (at max. diversity)

rMIMO = L/(NTlog2(M)) Rb/Rs = L (bit/s/Hz)

at max. diversity : rMIMO 1/NT L log2(M)

Bandwidth efficiency :

#states 1NTM (exponential in NT)

Page 47: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

47

STTrC : example

Example for NT = 2, 4 states, 4-PSK, L = 2 infobits per coded symbol pair

0 1 2 30 0,0 0,1 0,2 0,31 1,0 1,1 1,2 1,32 2,0 2,1 2,2 2,33 3,0 3,1 3,2 3,3

entryi,j : 2 data symbols corresponding to transition from state i to state j

max. diversity (NTNR = 2NR), max. bandwidth efficiency (L = log2(M)), corresponding to max. diversity

any (i,0) has columns (0, 1)T, (2, 0)T

with nonzero 1 and 2

rank = 2, i.e., max. rank

0

1

2

3

Page 48: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

48

Delay diversity : transmitter

)2K(a)3K(a)4K(a)5K(a)2(a)1(a00

0)2K(a)3K(a)4K(a)3(a)2(a)1(a0

00)2K(a)3K(a)4(a)3(a)2(a)1(a

A

Example : NT = 3

rank((i,0)) = NT diversity order = NTNR maximum possible diversity order !

info-bits encoder

r

mapper

r

Rb

)M(logr

RR

2

bs

#1

delay (NT -1)T#NT

Rb

(per antenna)

delay (n-1)T#n

Page 49: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

49

Delay diversity : bandwidth efficiency

Equivalent configuration :

Bandwidth efficiency (for K >> 1) : Rb/Rs = NTrMIMOlog2(M) = rlog2(M)

same bandwidth efficiency as SIMO/SISO with code rate r

Max. bandwidth efficiency (at max. diversity) of log2(M) achieved for r = 1 (uncoded delay diversity)

info-bits encoder

r

mapper

)M(logr

RR

2

bs

#1

delay (NT -1)T#NT

(per antenna)

delay (n-1)T#n

mapper

mapper

MIMO encoder : rMIMO = r/NT

Rb

Page 50: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

50

Delay diversity : trellis representation

Uncoded delay diversity (r = 1) can be interpreted as space-time trellis code :

state S(k) = (a(k-1), a(k-2), ..., a(k-NT+1))

input at time k : a(k) output during k-th symbolinterval : (a(k), a(k-1), ..., a(k-NT+1))

#states = 1NTM

decoding complexity : linear in K, exponential in NT

Page 51: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

51

Space-time block codes

Space-time block codes can be designed to yield maximum diversity and to reduce ML decoding to simple symbol-by-symbol decisions

decoding complexity linear (instead of exponential) in NTK

ML decoding of space-time code : minimizing ||R - HA||2 over all possible codewords A

A contains NTK coded symbols, which corresponds to NTKrMIMOlog2(M) infobits

In general, ML decoding complexity is exponential in NTK

Page 52: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

52

STBC : example 1

*12

*21

aa

aaA

Example 1 : NT = 2 (Alamouti code )

AAH = (|a1|2 + |a2|2)I2

(A has orthogonal rows, irrespective of the values of a1 and a2)

ML decoding (H = (h1, h2), R = (r1, r2), a1 and a2 i.i.d. symbols)

)|||)(||a||a(|)](a)(aRe[2minarg

)])([(Tr]][TrRe[2minarg||||minarg)a,a(

22

21

22

21

*2

T12

H2

*2

*2

T11

H1

*1

a,a

HHHH

a,a

2

a,a11

21

2121

hhrhrhrhrh

AAHHRHAHAR

22

21

*2

T21

H1

1 ||||u

hh

rhrh

22

21

*2

T11

H2

2 ||||u

hh

rhrh

no cross-terms involving both a1 and a2 symbol-by-symbol detection

211

a1 |au|minarga

1

222

a2 |au|minarga

2

Page 53: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

53

STBC : example 1

*12

*21

aa

aaA

*)i(

1)0(

1)i(

2)0(

2

*)i(2

)0(2

)i(1

)0(1)0,i(

)aa(aa

)aa(aaΔ

orthogonal rows rank = 2(= max. rank for NT = 2)

Assume M-point constellation A contains 4 symbols, i.e. 4log2(M)rMIMO = 2log2(M) infobits rMIMO = 1/2 (= 1/NT) : highest possible rate for max. diversity

Alamouti space-time block code yields - maximum diversity (i.e., 2NR)- maximum corresponding bandwidth efficiency (i.e., Rb/Rs = log2(M))- small ML decoding complexity

Page 54: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

54

STBC : example 2

Example 2 : NT = 3

*2

*1

*4

*32143

*3

*4

*1

*23412

*4

*3

*2

*14321

aaaaaaaa

aaaaaaaa

aaaaaaaa

A AAH = 2(|a1|2 + |a2|2 + |a3|2 + |a4|2)I3

rows of A are orthogonal any (i,0) has rank = 3 max. diversity (i.e., 3NR)

ML detection of (a1, a2, a3, a4) : symbol-by-symbol detection (no cross-terms)

Bandwidth efficiency : Rb/Rs = 4log2(M)/8 = log2(M)/2 i.e., only half of the max. possible value for max. diversity

max. bandwidth efficiency (under restriction of max. diversity and symbol-by-symbol detection) cannot be achieved for all values of NT

rMIMO = 1/6 (1/NT = 1/3)

Page 55: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

55

STBC : numerical results

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R (

bo

un

d)

SISO

N_T = 2 (Alamouti)

N_T = 3

Space-time block codesBPSKN_R = 1

Page 56: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

56

STBC : numerical results

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R (

bo

un

d)

SISO

SIMO

N_T = 2 (Alamouti)

N_T = 3

Space-time block codesBPSKN_R = 2

Page 57: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

57

STBC : numerical results

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R (

bo

un

d)

SISO

SIMO

N_T = 2 (Alamouti)

N_T = 3

Space-time block codesBPSKN_R = 3

Page 58: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

58

STBC : numerical results

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Eb/N0 (dB)

BE

R (

bo

un

d) SISO

SIMO

N_T = 2 (Alamouti)

N_T = 3

Space-time block codesBPSKN_R = 4

Page 59: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

59

Summary : SISO/SIMO/MIMO

B a n d w id the ffic ie n cy

D iv e r s ity o r d e r(M L d e tec tio n )

M L d e tec to rc o m p le x ity

S IS O rS IS O lo g 2(M ) 1 in g e n e ra l : e x p o n . in K(tre llis : lin e a r in K )

S IM O rS IM O lo g 2(M ) N R in g e n e ra l : e x p o n . in K(tre llis : lin e a r in K )

M IM O N T rM IM O lo g 2(M )

)(rankmaxN )0,i(

)0,i(R

in g e n e ra l :e x p o n . in N T K

Page 60: Multiple-input multiple-output (MIMO) communication systems

Advanced Modulation and Coding : MIMO Communication Systems

60

Summary : MIMO

Bandwidthefficiency

Diversity order(ML detection)

ML detectorcomplexity

spatialmultiplexing

NTrlog2(M) NRin general : expon. in NTK(trellis : linear in K, expon. in NT)

STTrC log2(M) (*) NTNR expon. in NT, linear in Kdelay

diversityrlog2(M) NTNR

if uncoded (r = 1) :expon. in NT, linear in K

STBC log2(M) (*) NTNR symbol-by-symbol decision

(*) assuming max. diversity NTNR is achieved

Remark : spatial multiplexing with ZF detection- complexity linear in NT

- diversity order is NR-NT+1