Multiphase LB Models

29
Multiphase LB Models Multi- Component Multiphase Miscible Fluids/Diff usion (No Interaction) Immiscible Fluids Single Component Multiphase Single Phase (No Interaction) Number of Components Interaction Strength Nature of Interaction Attractive Repulsive Low High Inherent Parallelism

description

Multiphase LB Models. Single Component Multiphase. Single Phase (No Interaction). Attractive. Interaction Strength. Number of Components. Nature of Interaction. Multi- Component Multiphase. Repulsive. Miscible Fluids/Diffusion (No Interaction). Immiscible Fluids. Inherent Parallelism. - PowerPoint PPT Presentation

Transcript of Multiphase LB Models

Page 1: Multiphase LB Models

Multiphase LB Models

Multi- Component Multiphase

Miscible Fluids/Diffusion (No Interaction)

Immiscible Fluids

Single Component Multiphase

Single Phase

(No Interaction)

Num

ber

of

Com

pone

ntsInteraction Strength

Nat

ure

of

Inte

ract

ion

Attractive

Repulsive

LowHigh

Inherent Parallelism

Page 2: Multiphase LB Models

Equations of State• Perfect (Ideal) gas law• van der Waals gas law• Molar volumes• Temperature dependence and Critical Points• Liquid-vapor coexistence and the Maxwell

Construction• Water and the non-quantitative nature of the van der

Waals equation• Alternative presentation: P()• Modern EOS for water

Page 3: Multiphase LB Models

Perfect or ideal gas law (EOS)

•P is pressure (ATM)

•V is volume (L)

•n is number of mols

•R is gas constant (0.0821 L atm mol-1 K-1)

•T is temperature (K)

nRTPV

V

nRTP

Page 4: Multiphase LB Models

Molar Volume

mV

RTP Perfect or ideal gas law

(EOS):

Vm = V/n is the volume occupied by one mole of substance. The gas laws can be re-written to eliminate the number of moles n

V

nRTP

Page 5: Multiphase LB Models

Single Component D2Q9 LBM (with c = 1 lu ts-1)

mV

RTP

32 scP

So, if 1/Vm (mol L-1) is density, cs2 = RT

Page 6: Multiphase LB Models

van der Waals EOS

2

V

na

nbV

nRTP

•‘a’ term due to attractive forces between molecules [atm L2 mol-2]

•‘b’ term due to finite volume of molecules [L mol-1]

V

nRTP Perfect or ideal gas law (EOS):

van der Waals EOS:

Page 7: Multiphase LB Models

Molar Volume

21

mm Va

bV

RTP

van der Waals gas law (EOS):

Vm is the volume occupied by one mole of substance. The gas laws can be re-written to eliminate the number of moles n.

2

V

na

nbV

nRTP

Page 8: Multiphase LB Models

CO2: P-V Space

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5Vm (L)

P (

atm

)

Ideal, 298K

Supercritical, 373K

Critical, 304K

Subcritical, 200K

Page 9: Multiphase LB Models

Liquid-Vapor Coexistence: CO2, P-V Space

6061626364656667686970

0 0.1 0.2 0.3Vm (L)

P (

atm

)

Subcritical, 293KVapor Pressure

Liquid Molar Volume

Vapor Molar Volume

Vapor Pressure

a = 3.592 L6 atm mol-2

b = 0.04267 L3 mol-1

Page 10: Multiphase LB Models

Maxwell Construction: CO2, P-V Space

6061626364656667686970

0 0.1 0.2 0.3Vm (L)

P (

atm

)

Subcritical, 293KVapor Pressure

A

B

Maxwell Construction: Area A = Area B

Liquid Molar Volume

Vapor Molar Volume

)( ,,

,

,lmgm

V

V m VVPPdVgm

lm

Vapor Pressure

Flat interfaces only!

Gives: --vapor pressure--densities of coexisting liquid and vapor

Page 11: Multiphase LB Models

Water, 298K: P-V Space

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0 0.5 1 1.5 2Vm (L)

P (a

tm)

van der Waals

Ideal

Page 12: Multiphase LB Models

van der Waals Non-Quantitative:Water, 298K: P- Space

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 200 400 600 800 1000 1200 1400 (kg/m3)

P (a

tm)

Ideal Gas

van der Waals

IsothermalCompressibilityof Water

Pvap

Page 13: Multiphase LB Models

Including Directional H-Bonds:Water, 298K: P- Space

-2,000

-1,500

-1,000

-500

0

500

1,000

1,500

2,000

0 200 400 600 800 1000 1200 1400 (kg/m3)

P (a

tm)

Ideal Gas

Truskett et al(1999)

IsothermalCompressibilityof Water

Spinodal

Page 14: Multiphase LB Models

Recap

• van der Waals equation gives a simple qualitative explanation of phase separation based on molecular attraction and finite molecular size

• Maxwell construction gives the vapor pressure and the densities of coexisting liquid and gas at equilibrium, FOR FLAT INTERFACES

• van der Waals equation fails to quantitatively reproduce the EOS of water

Page 15: Multiphase LB Models

FHP LBM Fluid Cohesion• An attractive force F between nearest neighbor fluid

particles is induced as follows:

6

1

)(),(),(a

aa ttGt eexxxF

00 exp

Shan, X. and H. Chen, 1994. PRE 49, 2941-2948.

•G is the interaction strength

• is the interaction potential:

• 0 and 0 are arbitrary constants

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900 1000

Density (mu lu-2)

Other forms

possible/common

Page 16: Multiphase LB Models

D2Q9 SCMP LBM Fluid-Fluid Interaction

0

0

e

8

1

),(),(),(a

a ttwtGt aa eexxxF

wa is 1/9 for a = 1, 2, 3, 4 and is 1/36 for a = 5, 6, 7, 8

G <0 for attraction between particlesForce is stronger when the density is higher

Page 17: Multiphase LB Models

Incorporating Forces

F = ma = m du/dt

F

u

U = u + F1/ + F2/ + ...

Page 18: Multiphase LB Models

LBM Non-ideal Equation of State

Water EOS after Truskett et al., 1999. J. Chem. Phys. 111, 2647-2656.

Non-ideal Component

Liquid/vapor coexistence at equilibrium (and flat interface) determined by Maxwell construction

Realistic E

OS

for w

ater: Fo

llow

s ideal g

as law

at low

den

sity, com

pressib

ility of w

ater at h

igh

den

sity and

spin

od

al at hig

h ten

sion

No repulsive potential in LB model

Shan and Chen, 1994. PRE 49, 2941-2948

0

0

e 2

2 GRT

RTP

Page 19: Multiphase LB Models

Simplified EOS

2

63 G

P

22

GRTRTP

3

1RT

0

0

e

Page 20: Multiphase LB Models

Single Component Multiphase

Modifications to code

Page 21: Multiphase LB Models

Eqs. 60 and 61

// Compute psi, Eq. (61).

for( j=0; j<LY; j++)

for( i=0; i<LX; i++)

if( !is_solid_node[j][i])

{

psi[j][i] = 4.*exp( -200. / ( rho[j][i]));

}

Page 22: Multiphase LB Models

Eqs. 60 and 61// Compute interaction force, Eq. (60) assuming periodic domain.

for( j=0; j<LY; j++)

{

jp = ( j<LY-1)?( j+1):( 0 );

jn = ( j>0 )?( j-1):( LY-1);

for( i=0; i<LX; i++)

{

ip = ( i<LX-1)?( i+1):( 0 );

in = ( i>0 )?( i-1):( LX-1);

Fx = 0.;

Fy = 0.;

if( !is_solid_node[j][i])

{

Fx+= WM*ex[1]*psi[j ][ip];

Fy+= WM*ey[1]*psi[j ][ip];

Fx+= WM*ex[2]*psi[jp][i ];

Fy+= WM*ey[2]*psi[jp][i ];

Fx+= WM*ex[3]*psi[j ][in];

Fy+= WM*ey[3]*psi[j ][in];

Fx+= WM*ex[4]*psi[jn][i ];

Fy+= WM*ey[4]*psi[jn][i ];

Fx+= WD*ex[5]*psi[jp][ip];

Fy+= WD*ey[5]*psi[jp][ip];

Fx+= WD*ex[6]*psi[jp][in];

Fy+= WD*ey[6]*psi[jp][in];

Fx+= WD*ex[7]*psi[jn][in];

Fy+= WD*ey[7]*psi[jn][in];

Fx+= WD*ex[8]*psi[jn][ip];

Fy+= WD*ey[8]*psi[jn][ip];

Fx = -G * psi[j][i] * Fx;

Fy = -G * psi[j][i] * Fy;

}

}

}

Page 23: Multiphase LB Models

Phase Separation

Page 24: Multiphase LB Models
Page 25: Multiphase LB Models
Page 26: Multiphase LB Models

Young-Laplace Eqn (1805)

21

11

rrP

rP

2 0P

r

Page 27: Multiphase LB Models

Young-Laplace Eqn (1805)

21

11

rrP

rP

Page 28: Multiphase LB Models

Measuring Surface Tension

y = 14.332x - 0.0016

R2 = 0.995

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1/r (lu-1)

P

(m

u t

s-2)

Page 29: Multiphase LB Models