Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM,...

67
Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017

Transcript of Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM,...

Page 1: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Multilevel stochastic collocations withdimensionality reduction

Ionut Farcas

TUM, Chair of Scientific Computing in Computer Science (I5)

27.01.2017

Page 2: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Outline

1 Motivation

2 Theoretical backgroundUncertainty modelingSparse gridsGeneralized polynomial chaos and sparse gridsMultilevel collocation methodsStochastic dimensionality reduction

3 Test scenario

4 Discussion

Page 3: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Motivation

problem: quantification of uncertainty in complex phenomenamultiphysics (e.g. fluid-structure interaction)plasma physics...

main challenge: “curse of dimensionality”→ “curse of resources”solution 1.1: delay the “curse of dimensionality”→ sparse gridssolution 1.2: try reducing the dimensionality→ sensitivity analysis

Page 4: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Motivation

problem: quantification of uncertainty in complex phenomenamultiphysics (e.g. fluid-structure interaction)plasma physics...

main challenge: “curse of dimensionality”→ “curse of resources”

solution 1.1: delay the “curse of dimensionality”→ sparse gridssolution 1.2: try reducing the dimensionality→ sensitivity analysis

Page 5: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Motivation

problem: quantification of uncertainty in complex phenomenamultiphysics (e.g. fluid-structure interaction)plasma physics...

main challenge: “curse of dimensionality”→ “curse of resources”solution 1.1: delay the “curse of dimensionality”→ sparse grids

solution 1.2: try reducing the dimensionality→ sensitivity analysis

Page 6: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Motivation

problem: quantification of uncertainty in complex phenomenamultiphysics (e.g. fluid-structure interaction)plasma physics...

main challenge: “curse of dimensionality”→ “curse of resources”solution 1.1: delay the “curse of dimensionality”→ sparse gridssolution 1.2: try reducing the dimensionality→ sensitivity analysis

Page 7: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Uncertainty modeling

probabilistic modelingprobability space (Ω,F ,P)

θ = (θ1, θ2, . . . , θd ) vector of continuous i.i.d. random variablessupp(θi) = Γi , supp(θ) = Γ1 × Γ2 × . . .× Γd = Γ

Page 8: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Generalized polynomial chaos approximation

idea: represent an arbitrary random variable (of interest) as afunction of another random variable with given distribution

how: use a series expansion of orthogonal polynomialslet p = (p1, . . . ,pd ) ∈ Nd :

∑di=1 pi < P

consider d-variate orthogonal polynomials

Φp(θ) := Φp1(θ1) . . .Φpd (θd )

for simplicity, drop the multi-index subscript p and use instead ascalar index n = 1, . . . ,N, N =

(d+Pd

)orthogonality means

E[Φn(θ)Φm(θ)] =

∫ΓΦn(θ)Φm(θ)ρ(θ)dθ = γnδnm, γn ∈ R

Page 9: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Generalized polynomial chaos approximation

idea: represent an arbitrary random variable (of interest) as afunction of another random variable with given distributionhow: use a series expansion of orthogonal polynomials

let p = (p1, . . . ,pd ) ∈ Nd :∑d

i=1 pi < Pconsider d-variate orthogonal polynomials

Φp(θ) := Φp1(θ1) . . .Φpd (θd )

for simplicity, drop the multi-index subscript p and use instead ascalar index n = 1, . . . ,N, N =

(d+Pd

)orthogonality means

E[Φn(θ)Φm(θ)] =

∫ΓΦn(θ)Φm(θ)ρ(θ)dθ = γnδnm, γn ∈ R

Page 10: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Generalized polynomial chaos approximation

idea: represent an arbitrary random variable (of interest) as afunction of another random variable with given distributionhow: use a series expansion of orthogonal polynomialslet p = (p1, . . . ,pd ) ∈ Nd :

∑di=1 pi < P

consider d-variate orthogonal polynomials

Φp(θ) := Φp1(θ1) . . .Φpd (θd )

for simplicity, drop the multi-index subscript p and use instead ascalar index n = 1, . . . ,N, N =

(d+Pd

)orthogonality means

E[Φn(θ)Φm(θ)] =

∫ΓΦn(θ)Φm(θ)ρ(θ)dθ = γnδnm, γn ∈ R

Page 11: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Generalized polynomial chaos approximation

idea: represent an arbitrary random variable (of interest) as afunction of another random variable with given distributionhow: use a series expansion of orthogonal polynomialslet p = (p1, . . . ,pd ) ∈ Nd :

∑di=1 pi < P

consider d-variate orthogonal polynomials

Φp(θ) := Φp1(θ1) . . .Φpd (θd )

for simplicity, drop the multi-index subscript p and use instead ascalar index n = 1, . . . ,N, N =

(d+Pd

)orthogonality means

E[Φn(θ)Φm(θ)] =

∫ΓΦn(θ)Φm(θ)ρ(θ)dθ = γnδnm, γn ∈ R

Page 12: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Generalized polynomial chaos approximation

idea: represent an arbitrary random variable (of interest) as afunction of another random variable with given distributionhow: use a series expansion of orthogonal polynomialslet p = (p1, . . . ,pd ) ∈ Nd :

∑di=1 pi < P

consider d-variate orthogonal polynomials

Φp(θ) := Φp1(θ1) . . .Φpd (θd )

for simplicity, drop the multi-index subscript p and use instead ascalar index n = 1, . . . ,N, N =

(d+Pd

)orthogonality means

E[Φn(θ)Φm(θ)] =

∫ΓΦn(θ)Φm(θ)ρ(θ)dθ = γnδnm, γn ∈ R

Page 13: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Generalized polynomial chaos

let x - deterministic inputs, θ - stochastic inputs, f - modelthe gPC approximation of order N reads

f (x ,θ) ≈ fN(x ,θ) =N−1∑n=0

cn(x)Φn(θ)

gPC coefficients via projection

cn(x) =

∫Γ

f (x ,θ)Φn(θ)ρ(θ)dθ = E[f (x ,θ)Φn(θ)]

Page 14: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Post-processing

expectationE[f (x ,θ)] = c0(x),

variance

Var [f (x ,θ)] =N−1∑n=1

c2n(x).

total Sobol’ indices

STi (x) =

Varp[f (x ,θ)]

Var [f (x ,θ)]=

∑k∈Ap

c2k (x)

Var [f (x ,θ)],

Ap = p ∈ Nd : pi ∈ p,pi 6= 0d∑

i=1

STi (x) = 1

Page 15: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Sparse grid idea

problem: discretize efficiently a tensor product space

standard approach: full grid→ O(Nd ) dof, if N dof in one direction→ “curse of dimensionality”idea: delay the curse of dimensionalityuse sparse grids: weaken the assumed coupling between theinput dimensionsO(Nd )→ O(N(logN)d−1) dof

Page 16: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Sparse grid idea

problem: discretize efficiently a tensor product spacestandard approach: full grid→ O(Nd ) dof, if N dof in one direction→ “curse of dimensionality”

idea: delay the curse of dimensionalityuse sparse grids: weaken the assumed coupling between theinput dimensionsO(Nd )→ O(N(logN)d−1) dof

Page 17: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Sparse grid idea

problem: discretize efficiently a tensor product spacestandard approach: full grid→ O(Nd ) dof, if N dof in one direction→ “curse of dimensionality”idea: delay the curse of dimensionalityuse sparse grids: weaken the assumed coupling between theinput dimensionsO(Nd )→ O(N(logN)d−1) dof

Page 18: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Sparse grid idea

Page 19: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Hierarchical sparse grids ingredients

grid level l = (l1, . . . , ld ) ∈ Nd

spatial position i = (i1, . . . , id ) ∈ Nd

generic grid point ul,i = (ul1,i1 , . . . ,uld ,id )

equidistant grid with mesh size hli = 2−li , i = 1, . . . ,dbasis functions ϕl,i with support [ul,i − hl ,ul,i + hl ]

ϕl,i(u) = ϕ(u − ihl

hl

)in d-dimensions,

ϕl,i (u) =d∏

j=1

ϕlj ,ij (uj )

Page 20: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Hierarchical sparse grids preliminaries

Hl = spanϕl,i : 1 ≤ i ≤2l − 1 - nodal setWl = spanϕl,i : i ∈ Il -hierarchical increment set

Il = i ∈ Nd : 1 ≤ ik ≤ 2lk − 1, ik odd , k = 1 . . . d

Hl =⊗

k≤l Wk

Page 21: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Hierarchical sparse grids preliminaries

given the hierarchical increment spaces Wl and given a level L,we can create further spaces VL

VL =⊗

k∈J Wk , for some multiindex set J

if J = l ∈ Nd : |l |∞ ≤ L - full grid spaceif J = l ∈ Nd : |l |1 ≤ L + d − 1 - standard sparse grid space

Page 22: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Hierarchical sparse grids preliminaries

given the hierarchical increment spaces Wl and given a level L,we can create further spaces VL

VL =⊗

k∈J Wk , for some multiindex set Jif J = l ∈ Nd : |l |∞ ≤ L - full grid space

if J = l ∈ Nd : |l |1 ≤ L + d − 1 - standard sparse grid space

Page 23: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Hierarchical sparse grids preliminaries

given the hierarchical increment spaces Wl and given a level L,we can create further spaces VL

VL =⊗

k∈J Wk , for some multiindex set Jif J = l ∈ Nd : |l |∞ ≤ L - full grid spaceif J = l ∈ Nd : |l |1 ≤ L + d − 1 - standard sparse grid space

Page 24: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Hierarchical sparse grids example

L = 5

Page 25: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Interpolation on hierarchical sparse grids

consider g : [0,1]d → Rthe sparse grid interpolant gI(u) of g(u) is

gI(u) =∑

l∈J ,i∈Il

αl,iϕl,i(u) (1)

αl,i are the so-called hierarchical surplusesassumeg ∈ Hmix

2 ([0,1]d ) = f : [0,1]d → R : Dl f ∈ L2([0,1]d ), |l |∞ ≤ 2,Dl f = ∂|l|1 f/∂x l1

1 . . . ∂x ldd

if full grid||g(u)− gI(u)||L2 ∈ O

(h2

L)

if sparse grid||g(u)− gI(u)||L2 ∈ O

(h2

LLd−1)

Page 26: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Piecewise linear basis functions

Page 27: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Piecewise polynomial basis functions

Page 28: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Spatial refinement

due to the hierarchical construction→ local refinement possibleαl,i - good measure of the interpolation error

the absolute value of αl,i - good refinement metricselect the grid points with the largest surpluses valuesadd their hierarchical descendants to Jif not all hierarchical parents exist add them

multiple grid points can be refined in one step

Page 29: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Spatial refinement

due to the hierarchical construction→ local refinement possibleαl,i - good measure of the interpolation errorthe absolute value of αl,i - good refinement metric

select the grid points with the largest surpluses valuesadd their hierarchical descendants to Jif not all hierarchical parents exist add them

multiple grid points can be refined in one step

Page 30: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Spatial refinement

due to the hierarchical construction→ local refinement possibleαl,i - good measure of the interpolation errorthe absolute value of αl,i - good refinement metric

select the grid points with the largest surpluses valuesadd their hierarchical descendants to Jif not all hierarchical parents exist add them

multiple grid points can be refined in one step

Page 31: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Spatial refinement: Franke’s function

f (x1, x2) = 0.75 exp(− (9x1 − 2)2

4− (9x2 − 2)2

4

)+

0.75 exp(− (9x1 + 1)2

49− 9x2 + 2

10

)+

0.5 exp(− (9x1 − 7)2

4− (9x2 − 3)2

4

)−

0.2 exp(− (9x1 − 4)2 − (9x2 − 7)

)

Page 32: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Franke’s function

Page 33: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Franke’s function refinement part 1L = 5refine 20% of the grid points

Page 34: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Franke’s function refinement part 2L = 6refine 20% of the grid points

Page 35: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

gPC coefficients computation

remembercn(x) =

∫Γ

f (x ,θ)Φn(θ)ρ(θ)dθ

how can we use sparse grids?let T : [0,1]d → Γ

then,

cn(x) =

∫[0,1]d

f (x ,T (u))Φn(T (u))|detJT (u)|ρ(T (u))du

intuitionΦn(T (u)) - tensor structureif f (x ,T (u)) would also have a tensor structure ...

Page 36: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

gPC coefficients computation

remembercn(x) =

∫Γ

f (x ,θ)Φn(θ)ρ(θ)dθ

how can we use sparse grids?

let T : [0,1]d → Γ

then,

cn(x) =

∫[0,1]d

f (x ,T (u))Φn(T (u))|detJT (u)|ρ(T (u))du

intuitionΦn(T (u)) - tensor structureif f (x ,T (u)) would also have a tensor structure ...

Page 37: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

gPC coefficients computation

remembercn(x) =

∫Γ

f (x ,θ)Φn(θ)ρ(θ)dθ

how can we use sparse grids?let T : [0,1]d → Γ

then,

cn(x) =

∫[0,1]d

f (x ,T (u))Φn(T (u))|detJT (u)|ρ(T (u))du

intuitionΦn(T (u)) - tensor structureif f (x ,T (u)) would also have a tensor structure ...

Page 38: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

gPC coefficients computation

remembercn(x) =

∫Γ

f (x ,θ)Φn(θ)ρ(θ)dθ

how can we use sparse grids?let T : [0,1]d → Γ

then,

cn(x) =

∫[0,1]d

f (x ,T (u))Φn(T (u))|detJT (u)|ρ(T (u))du

intuitionΦn(T (u)) - tensor structureif f (x ,T (u)) would also have a tensor structure ...

Page 39: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

gPC coefficients computation

iff (x ,T (u)) ≈ f (x ,T (u)) =

∑l∈J ,i∈Il

αl,iϕl,i (u)

T (u) := (F−11 (u1), . . . ,F−1

d (ud )), Fi cdf of θi

then

cn(x) =

∫[0,1]d

f (x ,T (u))Φn(T (u))du

=

∫[0,1]d

( ∑l∈J ,i∈Il

αl,i(x)ϕl,i(u))Φn(T (u))du

=∑

l∈J ,i∈Il

αl,i(x)d∏

j=1

∫[0,1]

Φj(F−1j (uj))ϕlj ,ij (uj)duj

Page 40: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

gPC coefficients computation

iff (x ,T (u)) ≈ f (x ,T (u)) =

∑l∈J ,i∈Il

αl,iϕl,i (u)

T (u) := (F−11 (u1), . . . ,F−1

d (ud )), Fi cdf of θi

then

cn(x) =

∫[0,1]d

f (x ,T (u))Φn(T (u))du

=

∫[0,1]d

( ∑l∈J ,i∈Il

αl,i(x)ϕl,i(u))Φn(T (u))du

=∑

l∈J ,i∈Il

αl,i(x)d∏

j=1

∫[0,1]

Φj(F−1j (uj))ϕlj ,ij (uj)duj

Page 41: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Multilevel approaches

“monolevelapproach”can we furtherreduce thecomputational cost?use multilevelapproaches

Page 42: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Multilevel stochastic collocation: no refinement

Page 43: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Multilevel stochastic collocation: with refinement

Page 44: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Multilevel gPC coefficients

let Mh denote the level of the deterministic domain discretizationlet Ll denote the sparse grid level

let cMh,Lln (x) denote the gPC coefficient computed using adeterministic grid of level Mhsparse grid of level Ll

then, for K + 1 levels

cMK ,LKn (x) =cM0,LK

n (x)

+ (cM1,LK−1n (x)− cM0,LK−1

n (x))+

...

+ (cMK ,L0n (x)− cMK−1,L0

n (x))

if nested sparse grids, cMK−l ,Ll−1n (x) ⊂ cMK−l ,Ll

n (x)

Page 45: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Multilevel gPC coefficients

let Mh denote the level of the deterministic domain discretizationlet Ll denote the sparse grid level

let cMh,Lln (x) denote the gPC coefficient computed using adeterministic grid of level Mhsparse grid of level Ll

then, for K + 1 levels

cMK ,LKn (x) =cM0,LK

n (x)

+ (cM1,LK−1n (x)− cM0,LK−1

n (x))+

...

+ (cMK ,L0n (x)− cMK−1,L0

n (x))

if nested sparse grids, cMK−l ,Ll−1n (x) ⊂ cMK−l ,Ll

n (x)

Page 46: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Multilevel gPC coefficients

let Mh denote the level of the deterministic domain discretizationlet Ll denote the sparse grid level

let cMh,Lln (x) denote the gPC coefficient computed using adeterministic grid of level Mhsparse grid of level Ll

then, for K + 1 levels

cMK ,LKn (x) =cM0,LK

n (x)

+ (cM1,LK−1n (x)− cM0,LK−1

n (x))+

...

+ (cMK ,L0n (x)− cMK−1,L0

n (x))

if nested sparse grids, cMK−l ,Ll−1n (x) ⊂ cMK−l ,Ll

n (x)

Page 47: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Stochastic dimensionality reduction

each uncertain input has a different contribution to the outputuncertainty

some inputs contribute very little→ they can be “ignored” (takenas deterministic)use sensitivity information to determine each input’s contributionin the multilevel scheme, given Kc < K and τ ∈ [0,1] (e.g. τ = 5%)

if STi (x) ≤ τ , “ignore” input i

determine the new stochastic dimensionality“project” computed result on the new (sparse) grid

Page 48: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Stochastic dimensionality reduction

each uncertain input has a different contribution to the outputuncertaintysome inputs contribute very little→ they can be “ignored” (takenas deterministic)

use sensitivity information to determine each input’s contributionin the multilevel scheme, given Kc < K and τ ∈ [0,1] (e.g. τ = 5%)

if STi (x) ≤ τ , “ignore” input i

determine the new stochastic dimensionality“project” computed result on the new (sparse) grid

Page 49: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Stochastic dimensionality reduction

each uncertain input has a different contribution to the outputuncertaintysome inputs contribute very little→ they can be “ignored” (takenas deterministic)use sensitivity information to determine each input’s contribution

in the multilevel scheme, given Kc < K and τ ∈ [0,1] (e.g. τ = 5%)

if STi (x) ≤ τ , “ignore” input i

determine the new stochastic dimensionality“project” computed result on the new (sparse) grid

Page 50: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Stochastic dimensionality reduction

each uncertain input has a different contribution to the outputuncertaintysome inputs contribute very little→ they can be “ignored” (takenas deterministic)use sensitivity information to determine each input’s contributionin the multilevel scheme, given Kc < K and τ ∈ [0,1] (e.g. τ = 5%)

if STi (x) ≤ τ , “ignore” input i

determine the new stochastic dimensionality“project” computed result on the new (sparse) grid

Page 51: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Sparse grid projection

if input k ,1 ≤ i ≤ d is “ignored” and uk is the correspondingdeterministic value

f (x ,T (u)) =∑

l∈J ,i∈Il

αl,iϕl,i(u)

=∑

l∈J ,i∈Il

αl,i

d∏j=1

ϕlj ,ij (uj)

=∑

l∈J ,i∈Il

αl,iϕlk ,ik (uk )d−1∏j=1

ϕlj ,ij (uj)

=∑

l∈J ′,i∈I′l

α′l,iϕ′l,i(u)

Page 52: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Test scenario

d2ydt2 (t) + c dy

dt (t) + ky(t) = f cos(wt)y(0) = y0dydt (0) = y1

t ∈ [0,20], w = 1.05

five uncertain inputsdamping coefficient c ∼ U(0.08,0.12)spring constant k ∼ U(0.03,0.04)forcing amplitude f ∼ U(0.08,0.12)initial position y0 ∼ U(0.45,0.55)initial velocity y1 ∼ U(−0.05,0.05)

underdamped regime

Page 53: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Test scenario

d2ydt2 (t) + c dy

dt (t) + ky(t) = f cos(wt)y(0) = y0dydt (0) = y1

t ∈ [0,20], w = 1.05five uncertain inputs

damping coefficient c ∼ U(0.08,0.12)spring constant k ∼ U(0.03,0.04)forcing amplitude f ∼ U(0.08,0.12)initial position y0 ∼ U(0.45,0.55)initial velocity y1 ∼ U(−0.05,0.05)

underdamped regime

Page 54: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

sparse grid functionality: SG++1

finite difference discretizationuniform inputs→ Legendre polynomialsmodified polynomial basis functions of deg 2tinterest = 10reference results with 32768 Gauss-Legendre nodesmultilevel approach with K = 2

cM2,L2n (x) = cM0,L2

n (x) + (cM1,L1n (x)− cM0,L1

n (x))

+ (cM2,L0n (x)− cM1,L0

n (x))

when using refinement, Li , i = 1,2 means L0 with i refinementsteps

1http://sgpp.sparsegrids.org/

Page 55: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

sparse grid functionality: SG++1

finite difference discretization

uniform inputs→ Legendre polynomialsmodified polynomial basis functions of deg 2tinterest = 10reference results with 32768 Gauss-Legendre nodesmultilevel approach with K = 2

cM2,L2n (x) = cM0,L2

n (x) + (cM1,L1n (x)− cM0,L1

n (x))

+ (cM2,L0n (x)− cM1,L0

n (x))

when using refinement, Li , i = 1,2 means L0 with i refinementsteps

1http://sgpp.sparsegrids.org/

Page 56: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

sparse grid functionality: SG++1

finite difference discretizationuniform inputs→ Legendre polynomialsmodified polynomial basis functions of deg 2

tinterest = 10reference results with 32768 Gauss-Legendre nodesmultilevel approach with K = 2

cM2,L2n (x) = cM0,L2

n (x) + (cM1,L1n (x)− cM0,L1

n (x))

+ (cM2,L0n (x)− cM1,L0

n (x))

when using refinement, Li , i = 1,2 means L0 with i refinementsteps

1http://sgpp.sparsegrids.org/

Page 57: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

sparse grid functionality: SG++1

finite difference discretizationuniform inputs→ Legendre polynomialsmodified polynomial basis functions of deg 2tinterest = 10

reference results with 32768 Gauss-Legendre nodesmultilevel approach with K = 2

cM2,L2n (x) = cM0,L2

n (x) + (cM1,L1n (x)− cM0,L1

n (x))

+ (cM2,L0n (x)− cM1,L0

n (x))

when using refinement, Li , i = 1,2 means L0 with i refinementsteps

1http://sgpp.sparsegrids.org/

Page 58: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

sparse grid functionality: SG++1

finite difference discretizationuniform inputs→ Legendre polynomialsmodified polynomial basis functions of deg 2tinterest = 10reference results with 32768 Gauss-Legendre nodes

multilevel approach with K = 2

cM2,L2n (x) = cM0,L2

n (x) + (cM1,L1n (x)− cM0,L1

n (x))

+ (cM2,L0n (x)− cM1,L0

n (x))

when using refinement, Li , i = 1,2 means L0 with i refinementsteps

1http://sgpp.sparsegrids.org/

Page 59: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

sparse grid functionality: SG++1

finite difference discretizationuniform inputs→ Legendre polynomialsmodified polynomial basis functions of deg 2tinterest = 10reference results with 32768 Gauss-Legendre nodesmultilevel approach with K = 2

cM2,L2n (x) = cM0,L2

n (x) + (cM1,L1n (x)− cM0,L1

n (x))

+ (cM2,L0n (x)− cM1,L0

n (x))

when using refinement, Li , i = 1,2 means L0 with i refinementsteps

1http://sgpp.sparsegrids.org/

Page 60: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

sparse grid functionality: SG++1

finite difference discretizationuniform inputs→ Legendre polynomialsmodified polynomial basis functions of deg 2tinterest = 10reference results with 32768 Gauss-Legendre nodesmultilevel approach with K = 2

cM2,L2n (x) = cM0,L2

n (x) + (cM1,L1n (x)− cM0,L1

n (x))

+ (cM2,L0n (x)− cM1,L0

n (x))

when using refinement, Li , i = 1,2 means L0 with i refinementsteps

1http://sgpp.sparsegrids.org/

Page 61: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

M0 = 500,M1 = 2000,M2 = 8000reference results

Eref [y(10)] = −0.155165Varref [y(10)] = 0.0002267

error measurement

err =∣∣∣qoiref − qoi

qoiref

∣∣∣

Page 62: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Tests setup

M0 = 500,M1 = 2000,M2 = 8000reference results

Eref [y(10)] = −0.155165Varref [y(10)] = 0.0002267

error measurement

err =∣∣∣qoiref − qoi

qoiref

∣∣∣

Page 63: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Test case 1: no dimensionality reduction

L0 L1 L2 ref % err exp err var11 71 351 - 4.2012e-06 1.3147e-0471 351 1471 - 7.7759e-07 1.5950e-0511 31 67 20% 4.0983e-04 7.8192e-0471 191 423 20% 1.4499e-06 2.8220e-0571 230 655 30% 7.8551e-07 1.4199e-05

Page 64: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Test case 2: dimensionality reduction

compute Sobol’ indices for cM1,L1n (x), i.e. start with K = 1

τ = 5%

err expectation ∈ O(10−3)

L0 L1 L2 ref % ST1 ST

2 ST3 ST

4 ST5

5 71 49 - 4.1% 1.2% 56.5% 4.8% 34.0%

17 351 129 - 4.1% 1.2% 56.5% 4.8% 34.0%

5 31 13 20% 4.1% 0.65% 56.7% 4.8% 33.9%

17 191 45 20% 4.1% 1.2% 56.5% 4.8% 34.0%

17 230 67 30% 4.0% 1.2% 56.6% 4.8% 34.0%

Page 65: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Test case 3: dimensionality reduction

compute Sobol’ indices for cM0,L2n (x) + (cM1,L1

n (x)− cM0,L1n (x))

τ = 5%

err expectation ∈ O(10−4)

L0 L1 L2 ref % ST1 ST

2 ST3 ST

4 ST5

5 71 351 - 4.1% 1.2% 56.5% 4.8% 34.0%

17 351 1471 - 4.1% 1.2% 56.5% 4.8% 34.0%

5 31 67 20% 4.1% 1.2% 56.5% 4.8% 34.0%

17 191 423 20% 4.0% 1.2% 56.6% 4.8% 34.0%

17 230 655 30% 4.0% 1.2% 56.6% 4.8% 34.0%

Page 66: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Discussion

from polynomial chaos coefficients, we can compute mean,variance, Sobol’ (sensitivity) indices etc.spatially adaptive sparse grids suitable to delay the curse ofdimensionalitymultilevel ideas can further reduce the computational costuncertain inputs that contribute little to output uncertainty can beignoredall of these should be used with care

Page 67: Multilevel stochastic collocations with dimensionality reduction - … · 2017. 1. 27. · TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017. Outline 1 Motivation

Thank you for your attention!