MULTICOMPONENT Ti-Si-BASED SYSTEMS

20
MULTICOMPONENT Ti-Si-BASED SYSTEMS or PHASE RELATIONSHIPS AND PROPERTIES OF MULTICOMPONENT Ti-Si-BASED ALLOYS AS FUNDAMENTAL BACKGROUND FOR ELABORATION OF HIGH-TEMPERATURE TITANIUM MATERIALS M.Bulanova , S.Firstov, L.Kulak, D.Miracle, L.Tretyachenko and T.Velikanova > 800 1345 4.7 13.67 3.5 1170 1.11 865 0.8 2130 1920 1570 1474 1478 64.11 1330 85.63 1414 1815

Transcript of MULTICOMPONENT Ti-Si-BASED SYSTEMS

MULTICOMPONENT Ti-Si-BASED SYSTEMS or

PHASE RELATIONSHIPS AND PROPERTIES OF MULTICOMPONENT Ti-Si-BASED ALLOYS

AS FUNDAMENTAL BACKGROUND FOR ELABORATION OF HIGH-TEMPERATURE

TITANIUM MATERIALS

M.Bulanova, S.Firstov, L.Kulak, D.Miracle, L.Tretyachenko and T.Velikanova

> 80013454.7 13.67

3.51170

1.11 8650.8

2130

1920

1570

1474 1478

64.11 133085.63

1414

1815

Report Documentation Page Form ApprovedOMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering andmaintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, ArlingtonVA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if itdoes not display a currently valid OMB control number.

1. REPORT DATE 18 MAR 2004

2. REPORT TYPE N/A

3. DATES COVERED -

4. TITLE AND SUBTITLE Multicomponent Ti-Si-Based Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Problems of Materials Science, Ukraine

8. PERFORMING ORGANIZATIONREPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES See also ADM001672., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

UU

18. NUMBEROF PAGES

19

19a. NAME OFRESPONSIBLE PERSON

a. REPORT NATO/unclassified

b. ABSTRACT unclassified

c. THIS PAGE unclassified

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

Scheme of the presentationTi-Si

Ti-Si-Al Ti-Si-Ge Ti-Si-Sn

Ti-Si-Ge-Al

Ti-Si-Sn-Al

Ti-Si-Zr

Ti-Zr-Si-Al

Ti-Si-R

Ti-R-Si-Sn

Ti-R-Si-Sn-Al

Ti-R

• Homogeneity ranges of the phases• Eutectics:

extension of the binary eutectic into the multicomponent systemsearch for new binary and ternary eutectics

• Phase relationships in the solid state• Links phase diagram - property

Ti-corners of Ti-Si-p-elementmelting diagrams

1405

Ti10 20 30 Ti Si

(Z)5 3

10

20

30

Si, at.%

Ga, a

t.%

e2

E

e1

Ti Ga(2/1)

2

Ti Ga(5/3)

5 3

β

β+ Z+ 2/1

Z+ 2/1+ 5/3

α

e1

e2

U1

α + β + Z

10 20 30 40

10

20

30

40

Ti at.% Si

at.%

Al

20Ti

20

Z

e1

e2

βTi Si5 3

Ti Ge5 3

Si, at.%

Ge, a

t.%

10

30

10 30

Ti 10 20 30 40Si, at.%

Sn, a

t.%

10

20

30

40

e3

e1

e6

e8

E U4

p1

p2

U1U2

U3

α2

2/15/3

βα+

+ Z2

α2 + Z+ T

2/1+ 5/3+ Tα2+ 2/1+ T

Z+ T+ 5/3

e4e2e5

T

M.Bulanova et. al, 1997

N.Antonova et. al, 1998 Our prognosis

M.Bulanova et. al, 2002, to be published

Two tendencies

1. Crystal struc ture of 5/3 binary intermetallics2. Difference in atomic radii op the p-elements

Melting diagrams of Ti- corners of Ti-Si-Al-p-element systems

Ti 10 20 30 40

10

20

30

40

e1

e2

(5Si + 5Ge), at.%Al

, at.%

β

Z

β + Ζ

10

20

30

40

Tie210 20 30 40

Al, a

t.%

(5Si + 5Sn), at.%

e1

Z

β

α

e1

e2

U1

α + β + Z

10 20 30 40

10

20

30

40

Ti at.% Si

at.%

Al

Ti 10 20 30 40

Al, at

.%

(7Si + 3Sn), at.%e2

e1

10

20

30

40

Al, at

.%

e2

Ti (9Si + 1Sn), at.%10 20 30 40

10

20

30

40

Z

e1

β

Isopleths of Ti-corners of Ti-Si-Al-p-element systems

β+ Z+ 3/1

α+ 3/1α+β+ 3/1

1600

1400

1200

1000

800

10 20 30

t, Co

90Ti5Si5Sn

at.% Al50Ti5Si5Sn

L

L+ β

β+ Z

L+ + Zβ

α+ Zα+β+

Zα2+ Z

α+α2+ Z

β+α γ2+ + Z

β+α 2+ Z

β+ 3/1

α+ Z+ 3/1

α+β+ Z+ 3/1

β+α2

β+γ+α 2

β+γ+ Zβ+α γ+ + Z α γ+ + Z

α+α +γ2 + Z

α +γ2 + Z

L+ α2 L+ γL+ β+α2

L+ +α γ2L+ Z+ +β α2

L+ +β+α γ2

800

1000

1200

1400

1600 L

L+ β

β+ Z

L+ + Zβ

L+ Z

α+β+ Z

α+ Z

α2+ Z

α+α2+ Z

α +γ2 + Z

10 20 30

at.% Al90Ti9Si1Sn

50Ti9Si1Sn

t, Co

β+ 3/1

α+ 3/1

α+β+ 3/1

α+ Z+ 3/1

α+β+ Z+ 3/1

α+α2+ Z+ 3/1

β+ Z+ 3/1α+γ+ Z

α+α +γ2 + Z

L+ + Zα

L+ + Zα+β

L+ + Zα+γ

1600

1400

1200

1000

800

10 20 30

t, Co

90Ti7Si3Sn

at.% Al50Ti7Si3Sn

L

L+ β L+ Z

β+ Z

L+ + Zβ

L+ + Zγ

L+ Zβ+γ+

α+ Z

α+β+ Z

α2+ Zα+α 2+ Z

α+β+α2+ Zβ+α2+ Z

α +γ2 + Zα+ 3/1

β+ 3/1α+β+ 3/1

β+ Z+ 3/1

α+β+ Z+ 3/1

α+ Z+ 3/1

α+α2+ Z+ 3/1

α2+ Z+ 3/1

β+γ+Z

α+α2+ 3/1

β+α +γ2 + Z

γ+Z

600

800

1000

1200

1400

1600

T, Co

10 20 30

Al, at.%90Ti10Si

50Ti10Si40Al

α+ 3/1

α+ Zα+ Z+ 3/1

α+ 3/1+ α2

3/1+ α2

3/1+α

2 +Z

Z+ α2

Z+ +α α2

Z+ α+γ

Z+γ

LL+ Z

L+ β L+ + Zβ

β+ Z

α+β+ Z

β+3/

1

β+ Z+ 3/1

Z+ α +γ2

600

800

1000

1200

1400

1600

T, Co

10 20 30

Al, at.%90Ti10Si

50Ti10Si40Al

α+ Z Z+ α2

Z+ +α α2

Z+ α+γ

Z+γ

LL+ Z

L+ β L+ + Zβ

β+ Z

α+β+ Z

Z+ α +γ2

for p

ract

ical u

sage

Maximum solubility of p-elements in d-metals

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,500

5

10

15

20

25

30

35

40

45

50

Ti-III Ti-IV Ti-V Zr-III Zr-IV Zr-V Sc-III Sc-IV Y-III Y-IV Y-V Hf-III Hf-IV Nb-Al

Solu

bilit

y, a

t.%

|rM-rX|, A

Formability of the 5/3 ternary compounds with the W5Si3

structure type

0,000 0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Ti5SiSb2

Ti5GeSb2

Ti-Ge-Bi

[∆rX/rXmax] * [(rM-rXmax

)/rM]

Утворю

ваність спол

уки

Hf5Pb2Al

Zr5Pb2Al

Ti5(Si,Sn)3

Nb5Sn1.5Ge1.5

Ti5Sn2Al

Nb5(Sn,Ga)3

Hf5Sn2Al

Zr5Sn2Al

Ti5Pb2Al

Ti-Si-BiTi-Si-Al

Ti-Si-GeTi-Si-Ga

Ti-Al-Ga

F = [∆rX/rXmax] * [(rM-rXmax)/rM]

∆rX – difference of the atomic radii of p-elements,rXmax – atomic radius of the larger p-element atom, rM – atomic radius of d-metal.

0.023 < F < 0.032.

Microhardness of Ti-matrix

100

300

500

kg/mm2

HV

Al, % (am.)

а

б

0 5 10 15 20250

300

350

400

450

500

primary α2

primary β with α2 precipitates

primary β transformet into α

β+Z+α2

β+Z

HV,

kg/m

m2

Sn, at.%

M.Bulanova et al., 2003

M.Bulanova et. al, 1998, 2000

Lattice spacings and microhardnessof the primary Z

Ti-5Si-5Ge-Al

Ti-10Si-Al

Ti Z,% (am.)

в

Al Z,% (am.)в

H (Z),

V

кг/мм2

Al, % (am.)90Ti10(Si+Ge,Sn) 0Al

50Ti10(Si+Ge,Sn)40Al

а

б

в

Correlation of microhardness of eutectic mixtures with the solidus

temperatures

Al, % (am.)10 20 30

600

500

400

300

кг/мм2HV,

90Ti10(Si+Ge,Sn) 0Al

50Ti10(Si+Ge,Sn)40Al

10Si

5Si+5Ge

5Si+5Sn

600

500

400

H/

V

кг мм2

10 15 20 25 30Al, % (am.)

10Si

9Si-1Sn

7Si-3Sn 5Si-5Sn

90Ti10(Si+Sn) 0Al

50Ti10(Si+Sn)40Al

5

α+ Z

β+Z

α β+ + Z

90Ti10(Si+Ge,Sn) 0Al

50Ti10(Si+Ge,Sn)40Al

Al, % (am.)

M.Bulanova et. al, 1998, 2000

Data obtained by Dr. O.Ban’kovsky

0 200 400 600 8000

100

200

300

400

500

600

ВТ18

54Ti-7Si-3Sn-36Al75Ti-9Si-1Sn-15Al

75Ti-7Si-3Sn-15Al

75Ti-5Si-5Sn-15Al

74Ti-6Si-20Al

HV1

-360

0, кг/м

м2

T, oC

Long-term hot hardness of Ti-Si-Sn-Al alloys

Isothermal sections of the Ti-Zr-Si system

N.H.Salpadoru et. al, 1995

Zr, at.%

10

20

30

40Ti Si (Z)5 3

Ti 20 40 60 80 Zr

90

80

70

60

Zr, at.%

Si, a

t.%

1200 Co

a

S2 Zr Si (2:1)2

Zr Si (3:1)3

β+2:

1+3:

1

β+2:1+S2β+

Z+S2

β

b

10

20

30

40Ti Si (Z)5 3

Ti 20 40 60 80 Zr

90

80

70

60

Zr, at.%

Zr, at.%

Si, a

t.%

Zr Si (2:1)2

Zr Si(3:1)3

β+2:1+3:1

β+2:1+S2β+Z+S2

β

S2

1050 Co

Ti Si(3:1)

3

β+Z+3/1

Ti-corner of the Ti-Zr-Si melting diagramour data

Isopleths and some properties of Ti-Zr-Si alloys

M.Bulanova et. al, to be published

800

1000

1200

1400

1600

t, Co

5 10 15 20 2580Ti 0Zr20Si

50Ti30Zr20Si

Zr, % (am.)

L

L+Z

β+Z

L+ +Zβ

β+Z+S2β+S2

L+Z+S2

β+Z+S2

Z+S2

β+3/

1

β+Z+3/1

β+3/1+S2

α+3/1

α+3/1+S2

α+β+3/1

α+β+S2

α+S2

a б

800

1000

1200

1400

t, Co

5 10 1595Ti 0Zr10Si

75Ti20Zr10Si

Zr, % (am.)

L

L+β

β+Zβ+S2β+

Z+S2

β+3/

1

β+3/

1+S2

α+3

/1

α+S2α+3

/1+S

2

α+β+S2

L+ +Zβ

β+Z+3/1

L+ +S2β

0 100 200 300 400 500 600 700

0,5

1,0

1,5

2,0

2,5

3,0

2Zr 10Zr 15Zr

HV1

-360

0, ГПа

T, oC

Two factors in competition

– dispersity of the structure – the temperature

Isopleths and microhardness of the Ti-Zr-Si-Al alloys

а б

β+Z+3/1

L

L+β L+Z

L+ +Zββ+Z

β+3/1

β+S2+3/1

β+Z+S2+3/1

β+S2β+Z+S2

α+S2α+β+S2

α+3/1

α+S2+3/1

α+Z

α+β+Z

α+Z+S2α+β+Z+S2

α+Z+S2+3/1

α+Z+3/1

α+α2+Z

α+α2+Z+3/1

α2+Z

α 2+3/1

α+α2+3/1

α2+Z+3/1

0 5 10 15 20 25 30350

400

450

500

550

600

650

700

750

800

0 5 10 15 20 25 30350

400

450

500

550

600

650

700

750

800

HV, kg/mm2

Zr, at.%

primary β*

eutectic β+S2

0 5 10 15 20 25

400

500

600

700

800

900

1000

1100

1200

0 5 10 15 20 25

400

500

600

700

800

900

1000

1100

1200

HV, kg/mm2

Al, at.%

primary β∗

eutectic β+Z

Ti-R phase diagramsfrom [T.Massalski2]

1200

1600

1000

1400~1275 1240

1235

885

20 40 60 80Ti Gd

132074

~890

Ti 20 40 60 80 Er

1000

1200

1400

1600L +L1 2

~1550

~960~900~825

Ti La

800

~1450

~910~790~710

Ti Ce

~835

Ti Nd

~900~960

1550

1800

1000

1200

1400

1600

8751050

20 40 60 80

Ti Sc Ti Y

1300 1355 ~81

1440

~870

t, Co

R, % (am.)

Ti-Dy phase diagram

800

1000

1200

20 40 60 80

1400

1600

1670

1280~2.5

882 850

82

14121381~1375

~96.5

DyDy, at. %

Ti

t, Co

(estimation - 1270)(estimation - 82)

(estimation - 885)

M.Bulanova et. al, 2003, to be published

Long-term hot hardnes of Ti-Dy-Si-Sn-Al alloys

0 200 400 600 800 10000

100

200

300

400

500

600

700

0 200 400 600 800 10000

100

200

300

400

500

600

700

0 200 400 600 800 10000

100

200

300

400

500

600

700

0 200 400 600 800 10000

100

200

300

400

500

600

700

68.3Ti-4Dy-23.7Si-4Sn

75Ti-5Dy-5Si-5Sn-5Al

80Ti-5Dy-5Si-5Sn-10Al

ВТ-18

HV1

-360

0, кг/м

м2

t, oC

General conclusions

• For the practical usage phase fields with participation of the Ti3Si-phase can be ignored

• Understanding of the relations of the details of phase diagrams, crystal structure of the phases and metal chemistry of the components on the one hand and mechanical properties of the phases and materials in the whole on the other hand is absolutely necessary for effective process of materials elaboration