Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad...

54
Discrimination in Decision Making: Humans vs. Machines Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck Institute for Software Systems

Transcript of Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad...

Page 1: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Discrimination in Decision Making: Humans vs. Machines

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi

Max Planck Institute for Software Systems

Page 2: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Machine decision making q  Refers to data-driven algorithmic decision making

q  By learning over data about past decisions

q  To assist or replace human decision making

q  Increasingly being used in several domains q  Recruiting: Screening job applications q  Banking: Credit ratings / loan approvals q  Judiciary: Recidivism risk assessments q  Journalism: News recommender systems

Page 3: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

The concept of discrimination q  Discrimination is a special type of unfairness q  Well-studied in social sciences

q  Political science q  Moral philosophy q  Economics q  Law

q  Majority of countries have anti-discrimination laws q  Discrimination recognized in several international human rights laws

q  But, less-studied from a computational perspective

Page 4: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Why, a computational perspective? 1. Datamining is increasingly being used to detect discrimination in human decision making

q  Examples: NYPD stop and frisk, Airbnb rentals

Page 5: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Why, a computational perspective? 2. Learning to avoid discrimination in data-driven (algorithmic) decision making

q  Aren’t algorithmic decisions inherently objective?

q  In contrast to subjective human decisions

q  Doesn’t that make them fair & non-discriminatory?

q  Objective decisions can be unfair & discriminatory!

Page 6: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Why, a computational perspective? q  Learning to avoid discrimination in data-driven

(algorithmic) decision making

q  A priori discrimination in biased training data q  Algorithms will objectively learn the biases

q  Learning objectives target decision accuracy over all users q  Ignoring outcome disparity for different sub-groups of users

Page 7: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Our agenda: Two high-level questions 1.  How to detect discrimination in decision making?

q  Independently of who makes the decisions q  Humans or machines

2.  How to avoid discrimination when learning? q  Can we make algorithmic decisions more fair? q  If so, algorithms could eliminate biases in human decisions

q  Controlling algorithms may be easier than retraining people

Page 8: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

This talk 1.  How to detect discrimination in decision making?

q  Independently of who makes the decisions q  Humans or machines

2.  How to avoid discrimination when learning? q  Can we make algorithmic decisions more fair? q  If so, algorithms could eliminate biases in human decisions

q  Controlling algorithms may be easier than retraining people

Page 9: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

The concept of discrimination q  A first approximate normative / moralized definition:

wrongfully impose a relative disadvantage on persons based on their membership in some salient social group e.g., race or gender

Page 10: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

The concept of discrimination q  A first approximate normative / moralized definition:

wrongfully impose a relative disadvantage on persons based on their membership in some salient social group e.g., race or gender

Page 11: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

The devil is in the details q  What constitutes a salient social group?

q  A question for political and social scientists

q  What constitutes relative disadvantage? q  A question for economists and lawyers

q  What constitutes a wrongful decision? q  A question for moral-philosophers

q  What constitutes based on? q  A question for computer scientists

Page 12: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Discrimination: A computational perspective

q  Consider binary classification using user attributes

A1 A2 … Am

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

Page 13: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Discrimination: A computational perspective

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

q  Consider binary classification using user attributes

q  Some attributes are sensitive, others non-sensitive

Page 14: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Discrimination: A computational perspective

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

q  Consider binary classification using user attributes

q  Some attributes are sensitive, others non-sensitive

Decisions should not be based on sensitive attributes!

Page 15: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

What constitutes “not based on”? q  Most intuitive notion: Ignore sensitive attributes

q  Fairness through blindness or veil of ignorance

q  When learning, strip sensitive attributes from inputs

q  Avoids disparate treatment q  Same treatment for users with same non-sensitive attributes

q  Irrespective of their sensitive attribute values

q  Situational testing for discrimination discovery checks for this condition

Page 16: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Two problems with the intuitive notion When users of different sensitive attribute groups have different non-sensitive feature distributions, we risk

1.  Disparate Mistreatment q  Even when training data is unbiased, sensitive attribute groups

might have different misclassification rates

2.  Disparate Impact q  When labels in training data are biased, sensitive attribute groups

might see different beneficial outcomes to different extents q  Training data bias due to past discrimination

Page 17: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

1.  To learn, we define & optimize a risk (loss) function q  Over all examples in training data q  Risk function captures inaccuracy in prediction q  So learning is cast as an optimization problem

2.  For efficient learning (optimization) q  We define loss functions so that they are convex

Background: Two points about learning

Page 18: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate mistreatment SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

Page 19: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate mistreatment

q  Suppose users are of two types: blue and pink

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

Page 20: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate mistreatment

q  Minimizing L(W), does not guarantee L(W) and L(W) are equally minimized q  Blue users might have a different risk / loss than red users!

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

Page 21: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate mistreatment

q  Minimizing L(W), does not guarantee L(W) and L(W) are equally minimized q  Stripping sensitive attributes does not help!

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

Page 22: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate mistreatment

q  Minimizing L(W), does not guarantee L(W) and L(W) are equally minimized q  To avoid disp. mistreatment, we need L(W) = L(W)

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

Page 23: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate mistreatment

q  Minimizing L(W), does not guarantee L(W) and L(W) are equally minimized q  Put differently, we need:

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

Page 24: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate impact

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Reject

Accept

Page 25: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate impact

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Accept

Reject

q  Suppose training data has biased labels!

Page 26: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate impact

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Accept

Reject

q  Suppose training data has biased labels! q  Classifier will learn to make biased decisions

q  Using sensitive attributes (SAs)

Page 27: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate impact

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Accept

Reject

q  Suppose training data has biased labels! q  Stripping SAs does not fully address the bias

Page 28: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate impact

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Accept

Reject

q  Suppose training data has biased labels! q  Stripping SAs does not fully address the bias

q  NSAs correlated with SAs will be given more / less weights q  Learning tries to compensate for lost SAs

Page 29: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Analogous to indirect discrimination q  Observed in human decision making

q  Indirectly discriminate against specific user groups using their correlated non-sensitive attributes q  E.g., voter-id laws being passed in US states

q  Notoriously hard to detect indirect discrimination q  In decision making scenarios without ground truth

Page 30: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Detecting indirect discrimination q  Doctrine of disparate impact

q  A US law applied in employment & housing practices

q  Proportionality tests over decision outcomes q  E.g., in 70’s and 80’s, some US courts applied the 80% rule

for employment practices q  If 50% (P1%) of male applicants get selected at least 40% (P2%) of

female applicants must be selected

q  UK uses P1 – P2; EU uses (1-P1) / (1-P2) q  Fair proportion thresholds may vary across different domains

Page 31: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

A controversial detection policy q  Critics: There exist scenarios where disproportional

outcomes are justifiable q  Supporters: Provision for business necessity exists

q  Though the burden of proof is on employers

q  Law is necessary to detect indirect discrimination!

Page 32: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate impact

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Accept

Reject

q  Suppose training data has biased labels! q  Stripping SAs does not fully address the bias

Page 33: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate impact

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Accept

Reject

q  Suppose training data has biased labels! q  Stripping SAs does not fully address the bias q  What if we required proportional outcomes?

Page 34: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Origins of disparate impact

SA1 NSA2 … NSAm

User1 x1,1 x1,2 … x1,m

User2 x2,1 x2,m

User3 x3,1 x3,m

… … … Usern xn,1 xn,2

… xn,m

Decision

Accept Reject Accept

Reject

q  Suppose training data has biased labels! q  Stripping SAs does not fully address the bias q  Put differently, we need:

Page 35: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Summary: 3 notions of discrimination 1.  Disparate treatment: Intuitive direct discrimination

q  To avoid:

2.  Disparate impact: Indirect discrimination, when training data is biased

q  To avoid:

3.  Disparate mistreatment: Specific to machine learning

q  To avoid:

Page 36: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Learning to avoid discrimination q  Idea: Discrimination notions as constraints on learning

q  Optimize for accuracy under those constraints

Page 37: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

A few observations q  No free lunch: Additional constraints lower accuracy

q  Tradeoff between accuracy & discrimination avoidance

q  Might not need all constraints at the same time q  E.g., drop disp. impact constraint when no bias in data

q  When avoiding disp. impact / mistreatment, we could achieve higher accuracy without disp. treatment q  i.e., by using sensitive attributes

Page 38: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Key challenge q  How to learn efficiently under these constraints?

q  Problem: The above formulations are not convex!

q  Can’t learn them efficiently

q  Need to find a better way to specify the constraints q  So that loss function under constraints remains convex

Page 39: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Disparate impact constraints: Intuition

Feature 1

Feat

ure

2

Males Females

Limit the differences in the acceptance (or rejection) ratios across members of different sensitive groups

Page 40: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Disparate impact constraints: Intuition

Feature 1

Feat

ure

2

Males Females

Limit the differences in the average strength of acceptance and rejection across members of different sensitive groups

A proxy measure for

Page 41: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Specifying disparate impact constraints q  Instead of requiring:

q  Bound covariance between items’ sensitive feature values and their signed distance from classifier’s decision boundary to less than a threshold

Page 42: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Learning classifiers w/o disparate impact

q  Previous formulation: Non-convex, hard-to-learn

q  New formulation: Convex, easy-to-learn

Page 43: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

A few observations q  Our formulation can be applied to a variety of

decision boundary classifiers (& loss functions) q  hinge-loss, logistic loss, linear and non-linear SVM

q  Works well on test data-sets q  Achieves proportional outcomes with low loss in accuracy

q  Can easily change our formulation to optimize for fairness under accuracy constraints

q  Feasible to achieve disp. treatment & impact simultaneously

Page 44: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Learning classifiers w/o disparate mistreatment

q  Previous formulation: Non-convex, hard-to-learn

Page 45: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Learning classifiers w/o disparate mistreatment q  New formulation: Convex-concave, can learn

efficiently using convex-concave programming

All misclassifications False positives False negatives

Page 46: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Learning classifiers w/o disparate mistreatment q  New formulation: Convex-concave, can learn

efficiently using convex-concave programming

All misclassifications False positives False negatives

Page 47: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

A few observations q  Our formulation can be applied to a variety of

decision boundary classifiers (& loss functions)

q  Can constrain for all misclassifications or for false positives & only false negatives separately

q  Works well on a real-world recidivism risk estimation data-set q  Addressing a concern raised about COMPASS, a

commercial tool for recidivism risk estimation

Page 48: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Summary: Discrimination through computational lens

q  Defined three notions of discrimination q  disparate treatment / impact / mistreatment q  They are applicable in different contexts

q  Proposed mechanisms for mitigating each of them q  Formulate the notions as constraints on learning q  Proposed measures that can be efficiently learned

Page 49: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Future work: Beyond binary classifiers q  How to learn

q  Non-discriminatory multi-class classification

q  Non-discriminatory regression

q  Non-discriminatory set selection

q  Non-discriminatory ranking

Page 50: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Fairness beyond discrimination q  Consider today’s recidivism risk prediction tools

q  They use features like personal criminal history, family criminality, work & social environment

q  Is using family criminality for risk prediction fair?

q  How can we reliably measure a social community’s sense

of fairness of using a feature in decision making?

q  How can we account for such fairness measures when making decisions?

Page 51: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Beyond fairness: FATE of Algorithmic Decision Making

q  Fairness: The focus of this talk

q  Accountability: Assigning responsibility for decisions q  Helps correct and improve decision making

q  Transparency: Tracking the decision making process q  Helps build trust in decision making

q  Explainability: Interpreting (making sense of) decisions q  Helps understand decision making

Page 52: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Our works q  Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez and Krishna P.

Gummadi. Fairness Constraints: A Mechanism for Fair Classification. In FATML, 2015.

q  Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez and Krishna P. Gummadi. Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment. In FATML, 2016.

q  Miguel Ferreira, Muhammad Bilal Zafar, and Krishna P. Gummadi. The Case for Temporal Transparency: Detecting Policy Change Events in Black-Box Decision Making Systems. In FATML, 2016.

q  Nina Grgić-Hlača, Muhammad Bilal Zafar, Krishna P. Gummadi and Adrian Weller. The Case for Process Fairness in Learning: Feature Selection for Fair Decision Making. In NIPS Symposium on ML and the Law, 2016.

Page 53: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Related References q  Dino Pedreshi, Salvatore Ruggieri and Franco Turini. Discrimination-aware Data

Mining. In Proc. KDD, 2008. q  Faisal Kamiran and Toon Calders. Classifying Without Discriminating. In Proc.

IC4, 2009. q  Faisal Kamiran and Toon Calders. Classification with No Discrimination by

Preferential Sampling. In Proc. BENELEARN, 2010. q  Toon Calders and Sicco Verwer. Three Naive Bayes Approaches for

Discrimination-Free Classification. In Data Mining and Knowledge Discovery, 2010.

q  Indrė Žliobaitė, Faisal Kamiran and Toon Calders. Handling Conditional Discrimination. In Proc. ICDM, 2011.

q  Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh and Jun Sakuma. Fairness-aware Classifier with Prejudice Remover Regularizer. In PADM, 2011.

q  Binh Thanh Luong, Salvatore Ruggieri and Franco Turini. k-NN as an Implementation of Situation Testing for Discrimination Discovery and Prevention. In Proc. KDD, 2011.

Page 54: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, … 8.pdf · 2017-01-17 · Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P. Gummadi Max Planck

Related References q  Faisal Kamiran, Asim Karim and Xiangliang Zhang. Decision Theory for

Discrimination-aware Classification. In Proc. ICDM, 2012. q  Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold and Rich Zemel.

Fairness Through Awareness. In Proc. ITCS, 2012. q  Sara Hajian and Josep Domingo-Ferrer. A Methodology for Direct and Indirect

Discrimination Prevention in Data Mining. In TKDE, 2012. q  Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, Cynthia Dwork. Learning Fair

Representations. In ICML, 2013. q  Andrea Romei, Salvatore Ruggieri. A Multidisciplinary Survey on Discrimination

Analysis. In KER, 2014. q  Michael Feldman, Sorelle Friedler, John Moeller, Carlos Scheidegger, Suresh

Venkatasubramanian. Certifying and Removing Disparate Impact. In Proc. KDD, 2015.

q  Moritz Hardt, Eric Price, Nathan Srebro. Equality of Opportunity in Supervised Learning. In Proc. NIPS, 2016.

q  Jon Kleinberg, Sendhil Mullainathan, Manish Raghavan. Inherent Trade-Offs in the Fair Determination of Risk Scores. In FATML, 2016.