Mud Report 1

download Mud Report 1

If you can't read please download the document

description

Mud Report 1

Transcript of Mud Report 1

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 1TBT I 2014

    Vorlesung Tiefbohrtechnik 1

    Introduction to Rotary-Drilling Technology (inc. Rig Count)

    Drilling a Well, Drilling methods

    Rock Mechanics I

    Drilling Mud: Functions, Properties, Rheology

    Rock Mechanics II, Well stability

    Borehole hydraulics, Overbalance vs. Underbalance

    Drilling bits, Selection criteria

    Drilling optimisation concepts

    Drill-string basics

    Downhole motors I (Theory, Moineu Motoren)

    Downhole motors II (Turbinen, Selection Criteria)

    Special drilling systems (Drilling Hammer, Coring)

    Formation pressure, Frac-gradienten

    Measuring drilling parameters

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 2TBT I 2014

    Drilling Hydraulics Applications

    Calculation of subsurface hydrostatic pressures that may tend to burst or collapse well tubulars or fracture exposed formations

    Several aspects of blowout prevention

    Displacement of cement slurries and resulting stresses in the casing string

    Bit nozzle size selection for optimum hydraulics

    Surge or swab pressures due to vertical pipe movement

    Carrying capacity of drilling fluids

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 3TBT I 2014

    Pressure drop in a well

    Pp=Psc + Pdp + Pdc + Pdt + Pb + Pdca + Pdpa >50%

    Less than 50%

    PP Pump pressure

    PSC surface equipment

    Pdp Drill pipe

    Pdc Drill collar

    Pb - Bit

    Pdca Annulus in DC Range

    Pdpa Annulus in DP range

    DP DC

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 4TBT I 2014

    Wellbore hydraulics

    HYDROSTATICS

    HYDRODINAMCS

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 5TBT I 2014

    Buoyancy Force = weight of fluid displaced (Archimedes, 250 BC)

    Figure 4 -9. Hydraulic forces acting on a foreign body

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 6TBT I 2014

    Effective (buoyed) Weight

    s

    fe 1WW

    s

    f

    f

    be

    W-W

    V-W

    FWWWe = buoyed weight

    W = weight in air

    f= fluid density

    s= steel density

    Fb = buoyancy force

    V = volume

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 7TBT I 2014

    Effective (buoyed) Weight

    s

    fe 1WW

    Buoyancy Factor (BF)

    Valid for a solid body or an open-ended pipe! (WHY?)

    s

    f1BF

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 8TBT I 2014

    Types of Flow: Laminar Flow

    Flow pattern is linear (no radial flow)

    Velocity at wall is ZERO

    Produces minimal hole erosion

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 9TBT I 2014

    Types of Flow: Laminar Flow

    Mud properties strongly affect pressure losses

    Is preferred flow type for annulus (in vertical wells)

    Laminar flow is sometimes referred to as sheet flow, or

    layered flow:

    * As the flow velocity increases, the flow type changes from laminar to

    turbulent.

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 10TBT I 2014

    Types of Flow: Turbulent Flow

    Flow pattern is random (flow in all directions)

    Tends to produce hole erosion

    Results in higher pressure losses (takes more energy)

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 11TBT I 2014

    Mud properties have little effect on pressure losses

    Is the usual flow type inside the drill pipe and collars

    Thin laminar boundary layer at the wall

    High turbulent flow is found under the bit and

    sometime in the annular area around drill collars and

    stabilizers

    Types of flow : Turbulent flow

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 12TBT I 2014

    Types of f low:Turbulent flow

    Fig. 4-30. Laminar and turbulent flow patterns in a

    circular pipe: (a) laminar flow, (b) transition between

    laminar and turbulent flow and (c) turbulent flow

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 13TBT I 2014

    pf = 11.41 v 1.75

    turbulent flow

    pf = 9.11 v

    laminar flow

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 14TBT I 2014

    Turbulent Flow - Newtonian Fluid

    The onset of turbulence in pipe flow is characterized

    by the dimensionless group known as the Reynolds

    number

    dvN

    _

    Re

    dv928N

    _

    Re

    In field units,

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 15TBT I 2014

    Turbulent Flow - Newtonian Fluid in SI units

    We often assume that fluid flow is

    turbulent if Nre > 2,100

    cp. fluid, ofviscosity

    in I.D., piped

    ft/s velocity,fluid avg. v

    lbm/gal density, fluid where

    _

    dvN

    _

    Re

    Kg/m3

    m/sec

    m

    Pa s

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 16TBT I 2014

    Turbulent Flow - Newtonian Fluid in field units

    We often assume that fluid flow is

    turbulent if Nre > 2,100

    cp. fluid, ofviscosity

    in I.D., piped

    ft/s velocity,fluid avg. v

    lbm/gal density, fluid where

    _

    dv928N

    _

    Re

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 17TBT I 2014

    Non-static Well Conditions

    Physical Laws

    Rheological Models

    Equations of State

    FLUID FLOW

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 18TBT I 2014

    Physical Laws

    Conservation of mass

    Conservation of energy

    Conservation of momentum

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 19TBT I 2014

    Physical Laws

    constant2211 qvAvA

    konstanthgp2

    v0

    2

    Conservation of mass

    Conservation of energy

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 20TBT I 2014

    Law of Conservation of Energy (Brnoulli)

    States that as a fluid flows from A to B:

    QW

    vvDDg

    VpVpEE

    2

    1

    2

    212

    112212

    2

    1

    In the wellbore, in many cases Q = 0 (heat)

    = constant{

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 21TBT I 2014

    Physical Laws

    Stokes Law

    18

    dg)(v

    2

    mcs

    sr vv

    Cutting transport

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 22TBT I 2014

    Settling velocity, after Bourgoyne et al.

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 23TBT I 2014

    Slip Velocity, after Bourgoyne et al.

    189.1f

    sss

    f

    dv

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 24TBT I 2014

    Particle Slip Velocity - small particles

    cp viscosity, fluid

    in particle, of diameterd

    lbm/gal fluid, ofdensity

    lbm/gal particle, solid of density

    ft/s velocity, slipv

    s

    f

    s

    s

    2

    sfss

    d)(138v

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 25TBT I 2014

    Intermediate: 1/3af

    2/3

    fsss

    _

    )(

    )(2.90dv

    Fully Turbulent:f

    fsss

    _ )(d1.54v

    Particle Slip Velocity other than laminar

    Note: all equations are in field units

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 26TBT I 2014

    Rheological Models

    Newtonian

    Bingham Plastic

    Power Law

    API Power-Law

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 27TBT I 2014

    Typical Drilling Fluid Vs. Newtonian, Bingham and Power Law Fluids

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 28TBT I 2014

    Equations of State

    Incompressible fluid

    Slightly compressible fluid

    Ideal gas

    Real gas

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 29TBT I 2014

    Average Fluid Velocity (SI units)

    Pipe Flow Annular Flow

    WHERE

    v = average velocity, m/s

    q = flow rate, m3/s

    d = internal diameter of pipe, m

    d2 = internal diameter of outer pipe or borehole, m

    d1 = external diameter of inner pipe, m

    2

    4d

    qv

    2

    1

    2

    24

    dd

    qv

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 30TBT I 2014

    Average Fluid Velocity (field units)

    Pipe Flow Annular Flow

    WHERE

    v = average velocity, ft/s

    q = flow rate, gal/min

    d = internal diameter of pipe, in.

    d2 = internal diameter of outer pipe or borehole, in.

    d1 = external diameter of inner pipe, in.

    2448.2 d

    qv

    2

    1

    2

    2448.2 dd

    qv

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 31TBT I 2014

    Velocity Profiles (laminar flow)

    (a) pipe flow and (b) annular flow

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 32TBT I 2014

    Representing the Circular Annulus as a Slot

    )r(r W slot of Width

    )r(r h slot ofHeight

    rr Wh slot equivalent of Area

    12

    12

    2

    1

    2

    2

    { slot approximation is OK if (d1/d2 > 0.3 }

    Equal

    Area

    and

    Height

    Simpler

    Equations

    -yet

    accurate

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 33TBT I 2014

    Free body diagram for fluid element in a narrow slot

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 34TBT I 2014

    yWdL

    dpp y WpF

    ypWF

    f22

    1

    Representing the Annulus as a Slot

    F4 = y + yW L = +ddy

    y W L

    F3 = W L

    Consider:

    - pressure forces

    - viscous forces

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 35TBT I 2014

    Representing the Annulus as a Slot

    state,steady At

    F = maSumming forces along flow:

    F = 0

    F1

    F2 + F3 F4 = 0

    0LWdy

    d -LWyW

    dL

    dp-p -y pW f

    ,gSimplifyindp fdL

    ddy

    = 0

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 36TBT I 2014

    Representing the Annulus as a Slot

    dy

    dv

    :integrate and variablesSeparate

    Model, FluidNewtonian With

    dL

    dp

    dy

    d f=

    dL

    dpy 0

    f Evaluate 0 at wall where y = 0

    But, -dy

    dv= So,

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 37TBT I 2014

    Representing the Annulus as a Slot

    dyydL

    dp-dv 0

    f

    00f

    2

    vy

    dL

    dp

    2

    yv

    o

    f

    dL

    dpy

    dy

    dv+=-

    0 v0,y when 0 vSince 0

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 38TBT I 2014

    Representing the Annulus as a Slot

    h-

    dL

    dp

    2

    h-0 h,y when 0 vSince 0f

    2

    dL

    dp

    2

    h- f0

    2f yhydL

    dp

    2

    1v

    Hence, substituting for v0 and 0 :

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 39TBT I 2014

    Representing the Annulus as a Slot

    vWdyvdAq

    The total flow rate:

    h

    0

    2f dy yhydL

    dp

    2

    Wq

    dL

    dp

    12

    Whq f

    3

    g,Integratin

    12

    2

    1

    2

    2 rrh and )r(rWhBut

    ( )2f yhydL

    dp

    2

    1v -=

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 40TBT I 2014

    Representing the Annulus as a Slot

    2

    12

    2

    1

    2

    2f )r)(rr(r

    dL

    dp

    12q

    )r(r

    q

    A

    qv

    2

    1

    2

    2

    velocity,averageBut

    2

    12

    _

    f

    )r(r

    v12

    dL

    dp

    dL

    dp

    12

    Whq f

    3

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 41TBT I 2014

    Representing the Annulus as a Slot

    2

    12

    _

    f

    )r(r

    v12

    dL

    dp

    In field units,

    2

    12

    _

    f

    )d1000(d

    v

    dL

    dp

    psi/ft, cp., ft/sec, in

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 42TBT I 2014

    Hydraulics Optimization

    The Art of Compromise

    - Improve Annulus cutting transport versus Bit

    flow regime (high velocity vs. Low pressure

    drop)

    Optimising Targets

    - Maximizing Hydraulic Horsepower (HHP)

    - Maximizing Impact Force (HIP)

    - Maximizing Nozzle velocity (HNV)

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 43TBT I 2014

    Horsepower

    Horsepower is defined as work per time

    Hydraulic horsepower is calculated as follows:

    PQ

    Where:

    Q = Flowrate in gallons/minute

    P = bit pressure drop in psi

    1714

    PQ

    Where:

    Q = Flowrate in cubic meters/minute

    P = bit pressure drop in Pa

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 44TBT I 2014

    Horsepower

    Please derive this equation for: flowrate in L/min

    and pressure in bar

    ?PQ

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 45TBT I 2014

    Input Horsepower Requirement

    Input horsepower requirement is the

    horsepower required to be used to develop the

    desired output horsepower. Note that there is

    always the efficiency that reduces the output/

    - Function of Energy conversion efficiency- Energy conversion to energy source (Diesel Engines, Generators)

    - Energy source to pump prime mover (Electric motor, Diesel Engine)

    - Prime mover losses through coupling (transmission, gearbox, belt slip, friction, etc.)

    - Pump efficiency

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 46TBT I 2014

    Setting Flow Rates

    Q maximum

    Q optimum

    Q minimum

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 47TBT I 2014

    Q Minimum

    Roller Cone Bits: Bottom Hole Cleaning (removing cuttings and transport them in annular section)

    - Additionally: Bit cooling and cleaning

    Fixed Cutter Bits: Cutter cooling and

    cleaning (temperature sensible tools)

    - Additionally: Hole cleaning (why?)

    Delay time to get cuttings samples to surface which

    reduce the ability to react.

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 48TBT I 2014

    Q Maximum

    Hole erosion

    - Turbulent Flow (very controversial today)

    E.C.D. effects

    - Fracture Gradient (max. Q > increase pressure loss)

    - R.O.P. Reduction (Why?)

    Pump capacity (limited power)

    Surface volume handling and treating

    capacity

    Energy expenses and costs

    Equipment wear

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 49TBT I 2014

    Setting QMinimum

    Hole Cleaning:

    - Rule of Thumb (v = 0.3 to 0.8 m/s)

    - Observation (experience)

    - Slip Velocity (Stokes or other)

    Bit Cooling and Cleaning:

    - Empirical Recommendations

    - Observation

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 50TBT I 2014

    Setting QMaximum

    Hole Erosion

    - Turbulent Flow

    - Strength of Formation Being Drilled

    E.C.D. Effects- Mud Rheology

    - Fracture Gradient

    - R.O.P. Reduction

    Pump Capacity

    - Pressure Limits

    - Flow Rate Limits

    - Horsepower Limits

    - Surface Equipment Pressure Limitations

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 51TBT I 2014

    Setting QMaximum

    Surface Volume Handling and Treating Capacity- Solids Control Equipment Limits

    - Gas Handling Limits

    Energy Expenses and Costs

    - High Horsepower Use Leads to Increased Fuel

    Consumption

    Equipment Wear

    - High Pressure and Flow Rates Leads to Increased Wear

    and Tear on Equipment

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 52TBT I 2014

    Bit Hydraulics Optimization Methods

    Hydraulic effectiveness can be optimized two ways:

    - Maximum hydraulic horsepower at the bit

    - Maximum impact force at the bit

    Maximum cleaning efficiency is limited by surface equipment limits and energy limits (i.e. pumps, lines).

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 53TBT I 2014

    vpb ppp

    Pump pressure System losses

    Hydraulic Horse Power at bit

    vpbb ppqqpH

    Flow rate

    Pressure Loss at the Bit

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 54TBT I 2014

    bn

    p2v

    bdn

    p2cv

    cd = 0,95 - 0,98

    Jet velocity at bit nozzle

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 55TBT I 2014

    Maximum Impact Force at the Bit

    McLean performed experimental work that indicated that bit cleaning was maximized when the impact force was maximized at the bit. This was supported by studies performed by Eckel who found that maximum impact force lead to maximum rate of penetration.

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 56TBT I 2014

    Maximum Horsepower at the Bit

    Bit horsepower is maximized when the bit pressure

    loss is equal to:

    0.57 x Psystem

    Psystem is limited by equipment and power available.

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 57TBT I 2014

    Maximum Impact Force at the Bit

    Kendall and Goins determined the impact force was maximized when bit pressure loss is equal to:

    0.47 x Psystem

    Psystem is limited by equipment and power available.

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 58TBT I 2014

    Maximum Horsepower at the Bit

    Kendall and Goins derived a relationship for

    maximizing horsepower at the bit. The derivation

    of this relationship is left to the class participant.

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 59TBT I 2014

    Setting QOptimum

    Cutting transport Pump limitation

    Maximizing ROP

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 60TBT I 2014

    Example of Hydraulic calculationsKonzept vj max Hb max

    HHP

    Fj max

    HIF

    Pump pressure pp [MPa] 25,00 25,00 25,00

    Flow rate qopt[L/min]

    800 1019 1209

    Bit pressure Drop pb [MPa] 18,66 15,69 11,33

    System pressure loss pv [MPa] 6,34 9,31 13,67

    Total input Power Hp [kW] 333 425 504

    Bit (horse) power Hb [kW] 248,77 266,50 228,31

    Impulse force Fj [N] 2675,88 3146,22 3312,30

    Jet velocity vj [m/s] 171,13 156,91 133,33

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 61TBT I 2014

    Example of Hydraulic calculations

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Bit

    pre

    ss

    ure

    dro

    p

    pre

    ss

    ure

    lo

    ss

    [%p p

    ]

    vj HHP HIF

    optimization concept

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 62TBT I 2014

    Example of Hydraulic calculations

    0

    50

    100

    150

    200

    250

    300

    800 900 1000 1100 1200 1300

    Pump rate[L/min]

    Hb [

    kW

    ]

    vj [m

    /s]

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    Fj [k

    W]

    vj

    Fj

    Hb

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 63TBT I 2014

    Pressure loss in surface equipment

    86,1

    z

    qCp

    C = Pressure loss coefficient

    z = Unit coefficient

    Pump Surface pipes Mud Hose Swivel Kelly

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 64TBT I 2014

    Alternative Hydraulic Designs

    Vortex

    Nozzles

    Clean Sweep

    Mudpick

    Switchblade

    Asymmetric

    NozzlesAll pictures courtesy of Schlumberger

  • Dr. Catalin Teodoriu

    Institut fr Erdl- und Erdgastechnik 65TBT I 2014Viewing the Well as a Manometer