MTO技術研究進展.pdf

9
2 3 工程研究——跨学科视野中的工程 2 (3): 191-199 2010 9 JOURNAL OF ENGINEERING STUDIES Sep., 2010 收稿日期: 20100810; 修回日期: 20100828 基金项目:国家高技术研究发展(863)计划(No. 2006AA06Z371),中国科学院前瞻性创新基金(No. 082702) 作者简介:王茜(1984),女,陕西西安人,硕士研究生,研究方向为应用化学。 李增喜(1966),男,山西平遥人,博士,教授,博士生导师。Email: [email protected] 王蕾(1975),女,山东烟台人,博士,副研究员,研究方向为绿色催化与清洁工艺。 DOI: 10.3724/SP.J.1224.2010.00191 甲醇制低碳烯烃技术研究进展 王茜 1 ,李增喜 1 ,王蕾 2 (1. 中国科学院研究生院化学与化学工程学院,北京 1000492. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190) :甲醇制低碳烯烃(MTO)技术提供了一种以煤制甲醇为原料生产烯烃的途径。本文重点讨 论了国内外 MTO 工艺的发展概况、工艺流程和使用现状,介绍了催化剂研究进展和 MTO 工艺的反应 机理,对 MTO 技术应用及其制约条件进行了初步分析,并根据我国的实际情况对其开发应用前景进 行了展望。 关键词甲醇制低碳烯烃(MTO);工艺;催化剂 中图分类号: TQ519 文献标识码: A 文章编号: 1674-4969(2010)03-0191-09 1 低碳烯烃(乙烯、丙烯等)作为化学工业重要的 基本有机化工原料,在现代石油和化学工业中起 着举足轻重的作用 [1] ,其产业发展水平和市场供 需平衡情况直接影响着整个石化工业的发展水平 和产业规模 [2] 。随着我国国民经济整体水平的不 断提高,特别是现代化学工业的迅猛发展对低碳 烯烃的需求日渐攀升,供需矛盾也将日益突出。 迄今为止,制取乙烯、丙烯等低碳烯烃的重要途 径,仍然是通过石脑油、轻柴油(均来自石油)的催 化裂化/ 裂解的反应过程 [3] 。然而近年来,石油资 源持续短缺,国际原油价格逐年上涨,烯烃的生产 成本不断提高,极大地影响了烯烃工业的发展 [4] 为解决烯烃供求方面的矛盾,在改进传统蒸汽裂 解和催化裂化方法的同时, 必须重视发展非石 油原料制低碳烯烃技术 [1] 我国的能源结构特点 是多煤、贫油、少气。这种能源现状,决定了以“煤” 代“油”生产低碳烯烃,实施“煤代油”能源战略, 是保证国家能源安全的重要途径之一 [5] 甲醇制烯烃(Methanol to Olefin,简称 MTO) 技术,开辟了由煤炭或天然气生产基本有机化工 原料的新工艺路线,是最有希望取代或部分代替 以石脑油为原料制取烯烃的路线,也是实现煤化工 或天然气化工向石油化工延伸发展的有效途径 [6] 利用非石油路线以甲醇为原料生产烯烃,不仅可 使烯烃价格摆脱石油产品的影响,减少我国对石 油资源的过度依赖,而且对推动贫油地区的工业 发展及均衡合理利用我国资源具有十分重要的战 略意义 [7] 。在当前调整能源利用的结构以逐步降 低国民经济发展对石油能源依赖的背景下,利用 我国储量丰富的煤资源,开发甲醇制烯烃技术, 对确保国家能源安全,实现经济快速、可持续发 展也具有深远的影响 [3, 6] 2 甲醇制低碳烯烃催化剂 MTO 技术的关键是高性能催化剂的研制,目 MTO 所用的催化剂以分子筛为主要活性组分, 分子筛的性质、合成工艺、载体的性质、加工助 剂的性质和配方、成型工艺等因素对分子筛催化

description

MTO

Transcript of MTO技術研究進展.pdf

  • 2 3 2 (3): 191-199 2 0 1 0 9 JOURNAL OF ENGINEERING STUDIES Sep., 2010

    : 20100810; : 20100828 :(863)(No. 2006AA06Z371)(No. 082702) :(1984) (1966)Email: [email protected] (1975)

    DOI: 10.3724/SP.J.1224.2010.00191

    1 1 2

    (1. 100049 2. 100190)

    (MTO) MTO MTO MTO

    (MTO) : TQ519 : A : 1674-4969(2010)03-0191-09

    1 ()

    [1][2]()/[3][4][1] [5]

    (Methanol to Olefin MTO)[6][7][3, 6]

    2 MTO

    MTO

  • 192 , 2 (3): 191-199 (2010)

    MTO ZSM-5 SAPO-34

    2.1 ZSM-5

    1977 (Mobil)Chang [8] ZSM-5 MTO ZSM-5 0.55 nm( 1) ZSM-5 C4+

    1 ZSM-5 [9]

    MTO ZSM-5[10-12] ZSM-5 MTO 2.2 SAPO-34

    1984 (UCC) (SAPO-nn )[13] SAPO-34 MTO

    100% 100%60% C5(UOP) SAPO-34 ZSM-5 MTO

    SAPO-34 PO4AlO4 SiO4 0.43 nm0.50 nm 2

    2 SAPO-34 [14] SAPO-34

    90% ZSM-5MTOSAPO-34 1000C 20%600C MTO SAPO-34MTO

    SAPO-34 SAPO-34

  • 193

    MTO [3]

    3 MTO(Mobil)

    (BASF)(Exxon)(UOP)(Hydro)MTO[15]

    MTO/MTP (UOP/ Hydro)(MTO)(DMTO)(SMTO)(Lurgi)(MTP)(FMTP) 5[7, 16-18]

    3.1 UOP/Hydro MTO

    (UOP)(Hydro) UOP/Hydro MTOMTO( 80%82%)( 95%) AA (>99%)[7]

    3 SAPO-34

    MTO-100 350550C 0.1 MPa 0.5 MPa (0.751.50)[19]

    1995UOP Hydro 0.75 t/d90 100% 80% 450 1 UOP/Hydro MTO 500 kt 91% [20]

    3 MTO

  • 194 , 2 (3): 191-199 (2010)

    1 (UOP/Hydro MTO) (kt) (kt) (%) 2370 500 48.0 345 33.0 100 9.6 H2 C1-C3 37 3.5 C5 25 2.4 COx 5 0.5 30 3.0 1328

    2008 1 31 Eurochem

    Viva Lekki 3300 kt/a MTO UOP/HydroMTO UOP(OCP) MTO-OCP 800 kt 2012

    3.2 DMTO

    20 80 MTO 90 (TEA)(DEA) TEA (TEAOH) SAPO SAPO-34 SAPO /(DMTO )

    4 MTO 50%80%DO123 2006 2 DMTO50 t/d 99.8% 78.16% 1 : 11.50.8 1150 h 2006 8

    3.3 SMTO

    2000 MTO MTO 20042006SAPO-3420052006 FCC FCC (SMTO) 100 t/d SMTO

    4 DMTO

  • 195

    2006 92007 11

    2 MTO UOP UOP UOP 66.7 MTO[18]

    3.4 (Lurgi) MTP

    (Lurgi) 20 90 MTP (LPG)

    (Sudchmie) ZSM-5 (

  • 196 , 2 (3): 191-199 (2010)

    3.5 FMTP

    1999[19] SAPO-34 MTO FMTP2006 7 13(FMTP) 30 kt10 kt 800 t 1.62009 3 2009 10 9 15470 h

    4

    CH3OH1/2CH3OCH3+1/2H2O+10.090 kJ CH3OCH32CH2 +H2O+18.698 kJ CH2 CH2 +15.968 kJ [4]

    CC H CC MTO 20[22] CC

    (Carbene)(Oxium ylide)(Hydrocarbon Pool)(Carbenium ion)

    4.1

    [23] Stevens ( 6)

    6

    4.2

    Kolboe[24] MTOhydrocarbon pool hydrocarbon pool hydrocarbon pool 13C

  • 197

    12C() 13C hydrocarbon pool hydrocarbon pool[25, 26]hydrocarbon-pool/Haw[27, 28] MAS NMR hydrocarbon-pool( 7)

    7

    5

    20000 kt/a 1 2 DMTO (

    )2006 12 1800 kt/a600 kt/a300 kt/a300 kt/a 2008 2010 MTP

    132 1670 kt/a 520 kt/a 2006 8

    MTP 2007 GSP2007 2010 MTP

    1680 kt/a500 kt/a2006 8 2010 Lurgi MTP(460 kt/a)(200 kt/a)(3.60 kt/a) 180

    43%[4][29] [30]

    6

    50%

  • 198 , 2 (3): 191-199 (2010)

    MTP MTO

    MTO l1.66% MTO 1000s kt/a() 3018 kt 2332 kt 20%

    MTO

    [1] . ZRP[J]. 200536(9)2630.

    [2] . [J]. 200523(6)812.

    [3] . [J]. 200838(4)16.

    [4] . [J]. 200846(2)1316.

    [5] . [J]. 200934(6)6672.

    [6] . [J]. , 2008, 27(9)1332.

    [7] . MTO/MTP [J]. 200846(1)36.

    [8] Chang C D, Silvestri A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite cata-lysts[J]. Journal of Catalysis197747(2)249259.

    [9] . [M]. 2002431.

    [10] Kaeding W W, Butter S A. Production of chemicals from methanol: I. Low molecular weight olefins[J]. Journal of Catalysis198061(1)155164.

    [11] McIntosh R J, Seddon D. The properties of magnesium and zinc oxide treated ZSM-5 catalysts for Conversion of methanol into olefin-rich products[J]. Applied Catalysis19836(3)307314.

    [12] Inui T, Matsuda H, Yamase O,et al. Highly selective syn-thesis of light olefins from methanol on a novel Fe-silicate[J]. Journal of Catalysis198698(2)491501.

    [13] Prakash A M, Unnikrishnan S. Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template[J]. Journal of the Chemical Society, Faraday

    Transactions199490(15)22912296. [14] Martin H. Transition-metal ions in aluminophosphate and

    silicoaluminophosphate molecular sieves: location, inter-

    action with adsorbates and catalytic properties[J]. Chemi-cal Reviews199999(3)635663.

    [15] . : [J]. 2009(4)1719.

    [16] . (MTO)[J]. 2007(6)1623.

    [17] . [J]. : C1 2009(5)6368.

    [18] . [J]. 20097(3)7276.

    [19] Barger P, Marker T, Karch J. Attrition resistant catalyst for light olefin production: US, 005952[P]. 2002-01-24.

    [20] . : [J]. 2009(5)1014.

    [21] . :1 356 299[P]. 2001.

    [22] Stcker M. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous and Mesoporous Ma-terials, 1999, 29(1/2)348.

    [23] VandenBerg J P, Wolthuizen J P, van Hooff J H C. Pro-ceedings of the 5th International Zeolite Conference[C]. LondonHeyden1980649.

    [24] Kolboe S. Methanol Reactions on ZSM-5 and Other Zeo-lite Catalysts-Autocatalysis and Reaction Mechanism[J]. Acta Chemica Scandinavica, 198670711713.

    [25] Arstad B, Kolboe S. Methanol-to-hydrocarbons reaction

  • 199

    over SAPO-34. Molecules confined in the catalyst cavities at short time on stream[J]. Catalysis Letters200171(3/4)209212.

    [26] Arstad B, Kolboe S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydro-carbons reaction[J]. Journal of the American Chemical

    Society2001123(33)81378138. [27] Sassi A, Wildman M A, Haw J F. Reactions of butylben-

    zene isomers on zeolite HBeta: Methanol-to-olefins hy-drocarbon pool chemistry and secondary reactions of ole-

    fins[J]. Journal of Physical Chemistry B, 2002, 106(34)87688773.

    [28] Song W, Haw J F, Nicholas J B, et al. Methylbenzenes are the organic reaction centers for methanol-to-olefin cataly-

    sis on HSAPO-34[J]. Journal of the American Chemical Society2000122(43)1072610727.

    [29] . [J]. 2009(9)2931.

    [30] . MTO [J]. 200936(8)104.

    Progress in the Research on Methanol-to-Olefin Technology

    Wang Qian1, Li Zengxi1, Wang Lei2 (1. Graduate University of Chinese Academy of Sciences, Beijing 100049;

    2. State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190)

    Abstract: The methanol-to-olefin (MTO) technology offers an alternative for the conversion of coal to light olefins by using coal methanol as raw material. This paper introduces the development, processing and present status of methanol-to-olefins technology both at home and abroad. It also covers the progress on the catalysts research and reaction mechanism of MTO. The paper also analyzes the application and the restriction of MTO technology and provides some prospect according to the actual conditions in China.

    Key words: methanol-to-olefin(MTO); technology; catalysts