Mte 583 class 18b

28
The Structure Factor The Structure Factor Suggested Reading P 303 312 i DG f&MH Pages 303-312 in DeGraef & McHenry Pages 59-61 in Engler and Randle 1

Transcript of Mte 583 class 18b

Page 1: Mte 583 class 18b

The Structure FactorThe Structure Factor

Suggested ReadingP 303 312 i D G f & M HPages 303-312 in DeGraef & McHenry

Pages 59-61 in Engler and Randle

1

Page 2: Mte 583 class 18b

Structure Factor (Fhkl)

2 ( )

1

i j iN

i hu kv lwhkl i

i

F f e

• Describes how atomic arrangement (uvw)

1i

influences the intensity of the scattered beam.

It tells us which reflections (i e peaks hkl) to• It tells us which reflections (i.e., peaks, hkl) to expect in a diffraction pattern.

2

Page 3: Mte 583 class 18b

Structure Factor (Fhkl)

• The amplitude of the resultant wave is given by a ratio of amplitudes:ratio of amplitudes:

amplitude of the wave scattered by all atoms of a UCli d f h d b lhklF

• The intensity of the diffracted wave is proportional

amplitude of the wave scattered by one electronhkl

• The intensity of the diffracted wave is proportional to |Fhkl|2.

3

Page 4: Mte 583 class 18b

Some Useful Relations

ei = e3i = e5i = … = -1e2i = e4i = e6i = … = +1

eni = (-1)n, where n is any integery geni = e-ni, where n is any integer

eix + e-ix =2 cos x

Needed for structure factor calculationsNeeded for structure factor calculations

4

Page 5: Mte 583 class 18b

Fhkl for Simple Cubic

• Atom coordinate(s) u,v,w:– 0,0,0

2 ( )

1

i j iN

i hu kv lwhkl i

iF f e

0,0,0

2 (0 0 0 )i h k l2 (0 0 0 )i h k lhklF fe f

No matter what atom coordinates or plane indices you substitute into the No matter what atom coordinates or plane indices you substitute into the structure factor equation for simple cubic crystals, the solution is always

non-zero.

5

Thus, all reflections are allowed for simple cubic (primitive) structures.

Page 6: Mte 583 class 18b

Fhkl for Body Centered Cubic

• Atom coordinate(s) u,v,w:– 0,0,0;

2 ( )

1

i j iN

i hu kv lwhkl i

iF f e

0,0,0;– ½, ½, ½.

2 h k li 2

2 (0) 2 2 2h k li

ihklF fe fe

1 i h k lF f ehkl

When h+k+l is even Fhkl = non-zero → reflection.

6

When h+k+l is odd Fhkl = 0 → no reflection.

Page 7: Mte 583 class 18b

Fhkl for Face Centered Cubic

• Atom coordinate(s) u,v,w:– 0,0,0;

2 ( )

1

i j iN

i hu kv lwhkl i

iF f e

0,0,0;– ½,½,0;– ½,0,½;– 0,½,½.

2 2 22 0 2 2 2 2 2 2h k h l k li i iif f f f

2 0 2 2 2 2 2 2i

hklF fe fe fe fe

7

1 i h k i h l i k lhklF f e e e

Page 8: Mte 583 class 18b

Fhkl for Face Centered Cubic 1 i h k i h l i k l

hklF f e e e

• Substitute in a few values of hkl and you will find the following:the following:

– When h,k,l are unmixed (i.e. all even or all odd), then Fhkl = 4f. [NOTE: zero is considered even]

F 0 f i d i di (i bi ti f dd– Fhkl = 0 for mixed indices (i.e., a combination of odd and even).

8

Page 9: Mte 583 class 18b

Fhkl for NaCl Structure

• Atom coordinate(s) u,v,w:– Na at 0,0,0 + FC transl.;

2 ( )

1

i j iN

i hu kv lwhkl i

iF f e

Na at 0,0,0 FC transl.;• 0,0,0;• ½,½,0;

½ 0 ½

This means these coordinates• ½,0,½;

• 0,½,½.

coordinates(u,v,w)

– Cl at ½,½,½ + FC transl.• ½,½,½; ½,½,½

1 1 ½ 0 0 ½The re-assignment of coordinates is

• 1,1,½; 0,0,½• 1,½,1; 0,½,0• ½,1,1. ½,0,0

gbased upon the equipoint concept in

the international tables for crystallography

9• Substitute these u,v,w values into Fhkl equation.

Page 10: Mte 583 class 18b

Fhkl for NaCl Structure – cont’d

• For Na: 2 ( )

1

i j iN

i hu kv lwhkl i

iF f e

2 (0) ( ) ( ) ( )i i h k i h l i k lf e e e e

( ) ( ) ( ) ( )

( ) ( ) ( )1Na

i h k i h l i k lNa

f e e e e

f e e e

• For Cl:

2 ( ) 2 ( ) 2 ( )( ) 2 2 2l k hi h k i h l i k li h k l

Clf e e e e

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

( )

2 2i h k l i i ih k h l k lCl

i h k l i i iCl

f e e e e

f e e e e

l k h

l k hThese terms are all positive and even. Whether the exponent is odd or

10

Whether the exponent is odd or even depends solely on the remaining

h, k, and l in each exponent.

Page 11: Mte 583 class 18b

Fhkl for NaCl Structure – cont’d2 ( )

1

i j iN

i hu kv lwhkl i

iF f e

• Therefore Fhkl:

( ) ( ) ( )

( ) ( ) ( ) ( )

1 i h k i h l i k lhkl Na

i h k l i i iCl

F f e e e

f e e e e

l k h Clf e e e e

which can be simplified to*:

( ) ( ) ( ) ( )1i h k l i h k i h l i k lhkl Na ClF f f e e e e

11

Page 12: Mte 583 class 18b

Fhkl for NaCl Structure

When hkl are even Fhkl = 4(fNa + fCl)Primary reflectionsPrimary reflections

When hkl are odd F = 4(f f )When hkl are odd Fhkl = 4(fNa - fCl)Superlattice reflections

When hkl are mixed Fhkl = 0N fl tiNo reflections

12

Page 13: Mte 583 class 18b

(200)100

80

90NaCl

CuKα radiation

(220)%)

60

70

Inte

nsit

y (

50

I

30

40

(111)

(222)

(400)

(420)

(422) (600)(442)

10

20

13

(111)

(311)

(400)

(331)(333)(511)

(440)(531)

20 30 40 50 60 70 80 90 100 110 120

2θ (°)0

10

Page 14: Mte 583 class 18b

Fhkl for L12 Crystal Structure

• Atom coordinate(s) u,v,w:– 0,0,0; A B

2 ( )

1

i j iN

i hu kv lwhkl i

iF f e

0,0,0;– ½,½,0;– ½,0,½;

A

– 0,½,½.

2 2 22 (0) 2 2 2 2 2 2h k h l k li i ii 2 (0) 2 2 2 2 2 2

A B B BiF f e f e f e f ehkl

14

( ) ( ) ( )A B

i h k i h l i k lF f f e e ehkl

Page 15: Mte 583 class 18b

Fhkl for L12 Crystal Structure

( ) ( ) ( )A B

i h k i h l i k lF f f e e ehkl

(1 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB

(1 1 0) Fhkl = fA + fB(1-1-1) = fA – fBA B

(1 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB

(2 0 0) Fhkl = fA + fB(1+1+1) = fA +3 fB

(2 1 0) Fhkl = fA + fB(-1+1-1) = fA – fB(2 1 0) Fhkl fA fB( 1 1 1) fA fB

(2 2 0) Fhkl = fA + fB(1+1+1) = fA +3 fB

(2 2 1) Fhkl = fA + fB(1-1-1) = fA – fB

(3 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB

(3 1 0) Fhkl = fA + fB(1-1-1) = fA – fB

(3 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB

15

(3 1 1) Fhkl fA + fB(1+1+1) fA +3 fB

(2 2 2) Fhkl = fA + fB(1+1+1) = fA +3 fB

Page 16: Mte 583 class 18b

Intensity (%)

100(111)

Example of XRD pattern from a material with an

L12 crystal structure A B

80

90

100 A B

60

70

80

40

50

60

(200)

30

40

(220) (311)

2 θ (°)

10

20

(100)(110)

(210) (211) (221)(300)

(310)

(222)

(320) (321)

16

( )

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 1150

( ) ( )

Page 17: Mte 583 class 18b

Fhkl for MoSi2

• Atom positions:– Mo atoms at 0,0,0; ½,½,½

Si t t 0 0 0 0 ½ ½ ½ ½ ½ ½ 1/3

c

– Si atoms at 0,0,z; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3– MoSi2 is actually body centered tetragonal with

a = 3.20 Å and c = 7.86 Å z

c c ac

x y

x y

z

xy

zb

x

y

z

a

b

a b ab

Viewed down z-axis

17

a a

Viewed down x-axis Viewed down y-axis

Page 18: Mte 583 class 18b

Fhkl for MoSi2

Substitute in atom positions:

( )2

1

i j iN

i hu kv lwhkl i

i

F f e

• Mo atoms at 0,0,0; ½,½,½• Si atoms at 0,0, ; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3

5 h k l h k l h k ll l

52 2 22 ( ) 2 ( )2 (0) 2 2 2 2 2 6 2 2 63 3

5

h k l h k l h k ll li i ii iiF f e f e f e f e f e f ehkl Mo Mo Si Si Si Si

l ll l h k h k 52 ( ) 2 ( ) 3 33 31

l ll l i h k i h ki ii h k lF f e f e e e eMo Si

Now we can plug in different values for h k l to determine the structure factor.F h k l 1 0 0• For h k l = 1 0 0

5(0) (0 )(0) (0)3 33 3

1 0 1 02 ( ) 2 ( )1 0 021

0(1 1) (1 1 1 1) 0

i ii iihkl Mo Si

hkl

Mo Si

F f e f e e e eF

f f

18

2

( ) ( )

You will soon learn that intensity is proportional to ; there is NO REFLECTION!

Mo S

l

i

hkF

f f

Page 19: Mte 583 class 18b

Now we can plug in different values for h k l to determine the structure factor

Fhkl for MoSi2 – cont’dNow we can plug in different values for h k l to determine the structure factor.• For h k l = 0 0 1

5(1) (1)1 13 33 3

0 0 0 02 ( ) 2 ( )0 0 10

i ii iihkl Mo SiF f e e f e e e e

223(1 ) (2 ( ) )

(1 1) ( 1 1) 0

i iMo Si

Mo si

f e f COS ef f

• For h k l = 1 1 0

2 0 NO REFLECTION!hklF

1 1 0 1 1 0 1 1 00 2 (0) 2 (0)

2 (0) (0) 2 2(1 ) ( )(2) (4)

i i ii ihkl Mo Si

i i iMo Si

Mo si

F f e e f e e e e

f e f e e e ef f

If you continue for different h k l combinations trends will emerge this will lead you

2 POSITIVE! YOU WILL SEE A REFLECTION

hklF

19

• If you continue for different h k l combinations… trends will emerge… this will lead you to the rules for diffraction…h + k + l = even

Page 20: Mte 583 class 18b

100 (103)

80

90

(110)

MoSi2CuKα radiation

%)

60

70(101)

(110)

Inte

nsit

y (

50

I

30

40(002)

(213)

10

20(112) (200)

(202) (211) (116)

(301)

(206)

(303)

2020 30 40 50 60 70 80 90 100 110 120

2θ (°)0

10(006) (204) (222)

(301) (303)

(312) (314)

Page 21: Mte 583 class 18b

Fhkl for MoSi2 – cont’d

2000 JCPDS International Centre for Diffraction Data All rights reserved

21

2000 JCPDS-International Centre for Diffraction Data. All rights reservedPCPDFWIN v. 2.1

Page 22: Mte 583 class 18b

Structure Factor (Fhkl) for HCP

2 ( )i j iN

i hu kv lwF f

• Describes how atomic arrangement (uvw)

( )

1

i j ihkl i

i

F f e

• Describes how atomic arrangement (uvw) influences the intensity of the scattered beam.

i.e.,

• It tells us which reflections (i.e., peaks, hkl) to expect in a diffraction pattern from a given crystal structure with atoms located at positions u v w

22

structure with atoms located at positions u,v,w.

Page 23: Mte 583 class 18b

• In HCP crystals (like Ru Zn Ti and Mg) the• In HCP crystals (like Ru, Zn, Ti, and Mg) the lattice point coordinates are:

– 0 0 0

– 1 2 13 3 2

• Therefore, the structure factor becomes:22 h k li 2

3 3 21i

hkl iF f e

Page 24: Mte 583 class 18b

• We simplify this expression by letting:p y p y g2 1

3 2h kg

which reduces the structure factor to:

21 ighkl iF f e

• We can simplify this once more using:

1hkl iF f e

from which we find:2ix ix 2cosix ixe e x

2 2 2 24 cos h k lF f 4 cos3 2hkl iF f

Page 25: Mte 583 class 18b

Selection rules for HCP

0 when 2 3 and oddh k n l 2

22

when 2 3 1 and even3 when 2 3 1 and odd

ihkl

f h k n lF

f h k n l

2

3 when 2 3 1 and odd4 when 2 3 and even

i

i

f h k n lf h k n l

For your HW problem, you will need these things to do the structure factor calculation for Ru.

HINT: It might save you some time if you already had the ICDD card for Ru.ad t e C ca d o u

Page 26: Mte 583 class 18b

List of selection rules for different crystals

Crystal Type Bravais Lattice Reflections Present Reflections AbsentSimple Primitive, P Any h,k,l Nonep , y

Body-centered Body centered, I h+k+l = even h+k+l = odd

Face-centered Face-centered, F h,k,l unmixed h,k,l mixed

NaCl FCC h,k,l unmixed h,k,l mixed

Zincblende FCC Same as FCC, but if all even and h+k+l4N then absent

h,k,l mixed and if all even and h+k+l4N then absent

Base-centered Base-centered h,k both even or both odd h,k mixed

Hexagonal close-packed Hexagonal h+2k=3N with l evenh+2k=3N1 with l oddh+2k=3N1 with l even

h+2k=3N with l odd

26

Page 27: Mte 583 class 18b

What about solid solution alloys?

• If the alloys lack long range order, then youIf the alloys lack long range order, then you must average the atomic scattering factor.

falloy =xAfA + xBfB

where xn is an atomic fraction for the atomic iconstituent

27

Page 28: Mte 583 class 18b

Exercises

• For CaF2 calculate the structure factor and determine the selection rules for alloweddetermine the selection rules for allowed reflections.

28