MTD 07_Ads25(1)

14
1 1 Molecular Thermodynamics (CH3141)  N.A.M. (Klaas) Besseling  Adsorption; the Langmuir Model 2 Ad sorption; a surface/interface attracts molecules from an adjoining gas phase or solution This is a very important phenomenon e.g. - heterogeneous catalysis -  purification (removing a certain component) - separation (e.g. chromatography) - modifying surfaces - detergency - emulsification - Adsorption from a liquid solution is similar to what we describe here for adsorption from a gas phase

Transcript of MTD 07_Ads25(1)

Page 1: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 1/14

1

1

Molecular Thermodynamics (CH3141)

 N.A.M. (Klaas) Besseling

• 

Adsorption; the Langmuir Model

2

Ad sorption;

a surface/interface attracts molecules

from an adjoining gas phase or solution

This is a very important phenomenon e.g.

-  heterogeneous catalysis

-  purification (removing a certain component)

-  separation (e.g. chromatography)

modifying surfaces-  detergency

-  emulsification

-  …

Adsorption from a liquid solution is similar to what we describe

here for adsorption from a gas phase

Page 2: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 2/14

2

3

Adsorption;the Langmuir model

Irving Langmuir

(1881-1957)

relatively simple model:

•  molecules bind to ‘sites’

•  one molecule can bind to one site

• 

molecules do not interact

hence sites are independent: ‘divide and rule’

4

sites on acrystal surface

solid surface in x- y plane; z  is normal to surface

variation of

 potential

energy

 x

 y

 z

 z !  x,  y!

It is reasonable to assume that an adsorbed atom is caught in a

3D harmonic potential well.

We assume that all sites are the same (same potential well)

!m

 z = z m

  z 

m

top view side view

Page 3: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 3/14

3

5

-  equilibrium between gas phase and adsorbed layer .

-  use a common zero of energy!

- choose the potential energy far from the surface as 0

- !m is the potential energy at the bottom of the

 potential-energy well associated with the adsorption sites.

!   = ! m + ! 

l  x

+ ! l  y

+ ! l  z 

l  x, l  y and l  z  are vibrational quantum numbers 

The energy of an adsorbed atom is:

Vibrations for the x, the y, and the z  direction are independent.

For the moment we assume molecules are mono-atomic

(or that intramolecular vibrations, rotations not influenced by adsorpti

Adsorption is (often) an equilibrium ‘reaction’

6

 partition function for single atom adsorbed at a specific site:

qad   =   exp   !

! m + ! 

l  x

+ ! l  y

+ ! l  z 

kT 

# $$

& ' ' l 

 z 

(l  y

(l  x

(

= exp   ! ! 

m

kT 

# $% 

& '   exp   !

 ! l  x

kT 

# $

& '    exp   !

! l  y

kT 

# $$

& ' ' 

  exp   ! ! 

l  z 

kT 

# $

& ' 

l  z 

(l  y

(l  x

(

qad    = exp   ! ! m

kT 

" # $

  % & '  q xq yq z

or

qvib, x   qvib, zqvib, y

 Note the factor where !m is the potential

energy at the bottom of the well

exp !" m

kT ( )

Page 4: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 4/14

4

(recall that for the vibrational ground state ,

vibrational temperature was defined as )

7

low-T :

qvib, x !  exp   "!  x,0

kT 

# $ %

  & ' (   = exp   "

 h"  x

2kT 

# $ %

  & ' (   = exp   "

 )vib, x

2T 

# $ %

  & ' ( 

qad   = exp   ! ! m

kT 

" # $

  % & ' exp   !

!  x,0

kT 

" # $

  % & ' exp   !

!  y,0

kT 

" # $

% & ' exp   !

!  z,0

kT 

" # $

  % & ' 

= exp   !! m  + !  x,0  + !  y,0  + !  z,0

kT " # $

% & ' 

= exp   !! ad 

kT 

" # $

  % & '   defining   ! ad  (  ! m  + !  x,0  + !  y,0  + !  z,0

! 0  =

  1

2h" 

!vib

  = "!    k   = h"    k 

only vibrational ground state relevantkT   << !!   T   <<"

vib

! !" 

= effective binding energy = ‘adsorption energy’;  pos or neg?

8

 M  surface sites

 N  adsorbed atoms

If the number of adsorbed atoms N  is the same

as the number of sites M , then

the total partition function of the adsorbed layer would be:

qad,1qad,2  . . . qad, N   =

 qad

 N 

if N  < M  there are many different configurations

(ways to arrange the N  atoms on the M  sites)

Call this number of different ways !conf 

  hence Qad

  =!conf 

qad

 N 

However, 

with

Partition function for

entire adsorbed layer

Page 5: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 5/14

5

9

The number of ways to arrange N  atoms at M  sites

can be calculated as follows.

Imagine that we place the atoms at the lattice of sites one by one.

( N  ! M )

for the 1st atom there are M  possibilities

for the 2nd atom there are possibilities

for the N th atom there are possibilities

 M  ! 1

  M  ! ( N  ! 1) =  M  ! N +1

 

 M M  ! 1( )  M  ! 2( ) . . .  M  ! N +1( ) = M !

 M  ! N ( )!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check this for yourself)

The number of ways to place N  distinguishable atoms on M  sites

is hence

10

the result is !conf  = M !

 N !  M  " N ( )!

(this is a binomial coeficient   ) M 

 N 

!  "  

#  $  

The number of ways to arrange N  distinguishable 

atoms on N  sites is N !

The number of different ways to arrange N  distinguishable atoms is

a factor of N ! larger than

the number of different ways to arrange N  indistinguishable atoms

When the adsorbed atoms are all of the same kind we have to divide

 by N !

Page 6: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 6/14

6

11

nr. of ways to arrange N  indistinguishable particles on M  sites,and leave M - N  sites vacant.

nr. of ways to arrange

 M  distinguishable particles on M  sites 

nr. of ways to arrange

 N  distinguishable particles

on N  sites

nr. of ways to arrange N  indistinguishable particles on M  sites,

and M - N  other indistinguishable particles on the remaining sites.

!conf  = M !

 N !  M  " N ( )! nr. of ways to arrange

 N  distinguishable particles on

 M  sites

is also equal to:

if then N   =

 M   !

conf   =

 M !

 M !=1

is the number of ways to arrange M  indistinguishable particles on

 M  sites

 M !

 N !  M  !  N ( )!

12

The Helmholtz energy of the adsorbed layer is

 Aad

  =  !kT  lnQad

  = !kT  ln   "conf qad 

 N ( )

= !kT  ln"conf   ! kTN  lnqad

In the low-T  limit !kTN  lnqad

  = N ! ad

(check this)

Elaborate the term and try to find an compact expression

in terms of (hint: use the Stirling formula).

Does this term contribute to the total mean energy ? to the entropy?

!kT ln"conf 

 ! = N M 

  E

Page 7: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 7/14

7

13

 

! ln"conf  =  ! ln M !

 N !  M  ! N ( )!=  ! ln M !+ ln N !+ ln  M  ! N ( )!

 = ! M ln M + M + N ln N  ! N +  M  ! N ( )ln  M  ! N ( )!  M  ! N ( )

 = ! M ln M + N ln N +  M  ! N ( )ln  M  ! N ( )

 = ! N ln M  !  M  ! N ( )ln M + N ln N +  M  ! N ( )ln  M  ! N ( )

 = N ln

 N 

 M +  M  ! N ( )ln

 M  ! N 

 M 

 =  M   ! ln! + 1"! ( )ln 1"! ( )( )

Elaborate the term and try to find an expression

in terms of (hint: use the Sterling formula).

Does this term contribute to the total energy ? to the entropy?

Did you expect this beforehand?

!kT ln"conf 

 ! = N M 

  E

14

 Aad   = kTM   !  ln!  +   1!! ( ) ln 1!! ( )( )! kTN  lnqad

= kTM   !  ln!  +   1!! ( ) ln 1!! ( )( )+ N ! ad 

We obtain for the Helmholtz energy:

!kT ln"conf  = kTM   # ln# + 1!# ( )ln 1!# ( )( )

The contribution to is

This contributes to the entropy (not to the energy)

S conf  = k ln!conf  = "kM   # ln# + 1"# ( )ln 1"# ( )( )

low T  limit

 Aad

  =  !kT  lnQad

  =  !kT  ln   "conf qad 

 N ( )

(can be checked using Gibbs-Helmholtz relation)

Page 8: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 8/14

8

15

At equilibrium the chemical potential in the gas phase is

equal  to that of the of the adsorbed layer.

Hence, need to find expression for µad 

A relation between number density (or the pressure

) in the gas phase and the “surface density”

can be found from condition:

 p   =  ! kT 

 µ gas( ! ) =  µ 

ad (" )

 !   = N gas

 ! = N ad  M 

 µ ad=

dAad

dN ad

! " #

$ % &  M ,T 

= 'kT   d lnQ

ad

dN ad

! " #

$ % &  M ,T 

(we already have expression for  µgas )

Agas Aad  equilibrium

16

lnQad=  M ln M  !  N ln N  !   M  !  N ( ) ln   M  !  N ( )+ N lnqad

!!"!#$

!"#$

# $% 

& ' # %$ 

= (!"" + !"  # ("( )+ !"%#$

= (!"  "

# ("+ !"%

#$

= (!"  ! 

1(! + !"%

#$

 µ ad= !kT 

  d lnQad

dN ad

" # $

% & '  M ,T 

for differentiation of

with respect to N  it is convenient to write

 A( N , M ,T )

 N 

 M =!  ,

 M  !  N 

 M =1!! 

 

Page 9: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 9/14

9

17

 µ ad= kT    ln

  ! 

1!! ! lnq

ad" # $

  % & ' 

 µ !"#

= !" !"   ! !#( ) (as derived earlier on)

 µ !"= µ 

#!$!   %&

  ! 

1!! 

1

!"# 

" #$ 

% &   = %&   ! '3( )

1!! =  p

"3qad

kT 

1!! = " "3

qad

  ! 

1!! = " K  " 

1!! =  pK 

 p the Langmuir

adsorption equation

K  p   = K  !   kT  Note that

adsorption equilibrium:

18

we did not bother about intramolecular contributions

check that the result is the same for adsorption of molecules,

when the intramolecular degrees of freedom are not influenced

 by attachment to the surface

 µ !"

= µ #!$

!   %&  ! 

1"! " %&!

!"" %&!

'&(  = %&   ! #

3( )" %&!'&(

 both and get same additional term µ ad

 µ gas

 

what would change if intramolecular degrees of freedom are

influenced by attachment to the surface?

Page 10: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 10/14

10

19

1!! = " K  " 

!   = " K  " 

1+ " K  " 

if then ! K  !   <<1   !   = K  "  " 

if then ! K  !  ! "  ! "1

Henri equation

surface gets full

or

Langmuir

Henri

K  !  ! !

 

!" 

 

!" 

in e.g.

mole/m2

or in

mole/gr

or in

gr/gr

 !  or  p!

if then !  K  ! =1   !   =   1

2

20

Langmuir equation not only applicable for gas adsorption,

also for adsorption from ideal-dilute solutions.

Expressions for K  " then more complicated (often unknown)

Handled as an adjustable parameter in experimental studies

!   = " K  " 

1+ " K  " 

!  ! = !

!"#$ =

%"#$ 

"&

where qad  = partition function of an adsorbed atom

q g  = partition function of an atom in the gas

more general (molecules, even in liquid solutions) !  ! =

"# $%

# & 

where q AD = partition function of an adsorbed molecule

q f  = partition function of molecule in the fluid

qg!V   and q

 f !V ( )

for adsorption from monoatomic ideal gas:

?does K  depend on V ?

Page 11: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 11/14

11

21

 Surface pressure according to the Langmuir model

Analogous to the pressure in a 3D system,

the surface pressure is given by

 pad

= !  "  A

ad

" O

#  

$  % &  

'  (   N ,T 

where is the surface area

with o as the area per site 

O =  Mo

 pad

= !  !  A

ad

!  Mo

" # $

% & '  N ,T 

= ! 1

o

!  Aad

!  M 

" # $

% & '  N ,T 

=

kT 

o

!  lnQad

!  M 

" # $

% & '  N ,T 

22

lnQad= M  ln M  !  N  ln N  !   M  !  N ( ) ln  M  !  N ( )+ N  lnqad 

We knew already

!  M 

"  

#  $ 

%  

&  '   N ,T 

 ln M +1 ! ln  M  ! N ( )!1

! !"!

! !

" #$ 

% & " ## 

= !"  !

! '"= !"

  $

%$'! &= '!"%$'! &

0 0

Page 12: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 12/14

12

23

 !!"=

"# 

$

! #$%!"

! &

! " #

$ % & ' %# 

if #  << 1 then

 pad= !

kT 

oln 1!" ( )

  pad

=  !kT 

oln 1!" ( ) # kT 

o+ ...= kT  $ + ...

~ ideal gas law

if then! "1   pad!"

 ln 1+ x( ) = x

!

1

2 x

2 + 1

3 x

3...! 

!=

"

#!=

"

$! " 

which is more realistic than the ideal-gas result!

24

The surface pressure of an adsorbed layer yields a reduction of

the  surface tension (interfacial tension) :

!   (" ) = !  0 !  pad(" )

where $ is the surface tension,

and $0 the surface tension of the “clean” surface

Page 13: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 13/14

13

25

An important relation in interfacial thermodynamics is

the Gibbs adsorption law.

For a one-component system it can be written as:

!" 

! µ 

#  $  % 

&  '  (  

= )*

Check that our expressions for and are

thermodynamically consistent according the Gibbs adsorption law.

 pad(! )  µ (! )

26

Check that our expressions for and are

thermodynamically consistent according the Gibbs adsorption law

 pad(! )  µ (! )

 !  = ! 

0 "  pad

= ! 0+kT 

oln 1"# ( ) = ! 

0 "

kT 

oln  $ +1( )

 µ   = kT    ln

  ! 

1!!  ! lnqad" 

# $  % 

& ' 

 

µ ! µ (1 2)

kT = ln

  " 

1!"  µ 

(1 2)! "kT  lnq

ad

exp  µ !  µ 

(1 2)

kT 

" # $

% & '  (  !   =

1!" )   1!"   =

1

!  !1)   "   =

1+ ! 

where

first write !  as a function of µ 

Page 14: MTD 07_Ads25(1)

7/24/2019 MTD 07_Ads25(1)

http://slidepdf.com/reader/full/mtd-07ads251 14/14

14

!   = exp  µ  !  µ 

(1 2)

kT 

# $% 

& ' with

27

!    = !  0 !

 kT 

oln   !  +1( )

 

! µ 

"  #  $ 

%  &  '  T 

!

kT 

o

1

!  +1! 

  1

kT 

 

!" 

! µ 

#  $  % 

&  '  (  T 

= )1

o

* +1= )

o= ),

Q.E.D.

(use the “chain rule”)