Actuatorsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_3.pdf · This chapter discusses...

5
excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 3, Pages 45-79 Actuators Marko B. Popovic*, Kathleen A. Lamkin-Kennard , Philipp Beckerle ‡,§ , Matthew P. Bowers* *WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES ROCHESTER INSTITUTE OF TECHNOLOGY, ROCHESTER, NY, UNITED STATES TECHNISCHE UNIVERSITAT DORTMUND, DORTMUND, GERMANY § TECHNISCHE UNIVERSITAT DARMSTADT, DARMSTADT, GERMANY Abstract This chapter discusses natural and synthetic muscles as well as other human made actuators. A comprehensive review and comparison of biological and synthetic motor units at different levels and scales are provided. The study of actuation is quite relevant in the context of biomechatronics research. In order to decide how best to interface with a biological system one should clearly know a lot on the biological system including its actuation mechanisms. Moreover, that knowledge can serve as inspiration to engineer better synthetic counterparts. Still further, it is always good to have a “rich menu,” that is, multiple options on the table in terms of synthetic actuators; different problems may require different approaches and corresponding components. Finally, it is quite an intellectually rewarding experience to compare living and engineered systems and their building block elements at different levels. CHAPTER OUTLINE 3.1 Introduction .............................................................................................................................. 45 3.2 Synthetic Muscles ...................................................................................................................... 46 3.2.1 Pneumatic Artificial Muscle (PAM); McKibben Muscle ..............................................................46 3.2.2 Hydro Muscle .............................................................................................................................48 3.2.3 Pure Fluidic Elastomer Actuators (FEAs) ....................................................................................54 3.2.4 Cable-Driven “Muscles” .............................................................................................................56 3.2.5 Liquid-Vapor Transition and Chemical Reaction-Based “Muscles” ............................................60

Transcript of Actuatorsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_3.pdf · This chapter discusses...

Page 1: Actuatorsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_3.pdf · This chapter discusses natural and synthetic muscles as well as other human made actuators. A comprehensive

excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 3, Pages 45-79

Actuators Marko B. Popovic*, Kathleen A. Lamkin-Kennard†, Philipp Beckerle‡,§, Matthew P. Bowers*

*WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES †ROCHESTER INSTITUTE OF TECHNOLOGY, ROCHESTER, NY, UNITED STATES ‡TECHNISCHE UNIVERSITAT DORTMUND, DORTMUND, GERMANY §TECHNISCHE UNIVERSITAT DARMSTADT, DARMSTADT, GERMANY

Abstract

This chapter discusses natural and synthetic muscles as well as other human made actuators. A

comprehensive review and comparison of biological and synthetic motor units at different levels and

scales are provided. The study of actuation is quite relevant in the context of biomechatronics research.

In order to decide how best to interface with a biological system one should clearly know a lot on the

biological system including its actuation mechanisms. Moreover, that knowledge can serve as inspiration

to engineer better synthetic counterparts. Still further, it is always good to have a “rich menu,” that is,

multiple options on the table in terms of synthetic actuators; different problems may require different

approaches and corresponding components. Finally, it is quite an intellectually rewarding experience to

compare living and engineered systems and their building block elements at different levels.

CHAPTER OUTLINE

3.1 Introduction .............................................................................................................................. 45

3.2 Synthetic Muscles ...................................................................................................................... 46

3.2.1 Pneumatic Artificial Muscle (PAM); McKibben Muscle ..............................................................46

3.2.2 Hydro Muscle .............................................................................................................................48

3.2.3 Pure Fluidic Elastomer Actuators (FEAs) ....................................................................................54

3.2.4 Cable-Driven “Muscles” .............................................................................................................56

3.2.5 Liquid-Vapor Transition and Chemical Reaction-Based “Muscles” ............................................60

Page 2: Actuatorsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_3.pdf · This chapter discusses natural and synthetic muscles as well as other human made actuators. A comprehensive

3.3 Electroactive Polymers ............................................................................................................... 62

3.4 Shape-Memory Alloys and Shape-Memory Polymers .................................................................. 64

3.5 Variable Stiffness/Impedance Actuators .................................................................................... 65

3.5.1 Elastic Element Configuration and Design .................................................................................66

3.6 A Brief Review of Nonbiologically (or Less Biologically) Inspired Conventional

Actuators ......................................................................................................................................... 67

3.6.1 Linear Actuators .........................................................................................................................68

3.6.2 Rotary Actuators .........................................................................................................................69

3.7 Biological Actuators: Muscles ...................................................................................................... 71

3.7.1 Actuation of Biological Muscles ..................................................................................................75

A Appendix: Braided, Helically Wound Mesh for McKibben Like Artificial Muscle ............................. 76

References ....................................................................................................................................... 77

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00003-3

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References

[1] M.B. Popovic, Biomechanics and Robotics, Pan Stanford Publishing Pte. Ltd., Singapore, 2013.

doi:10.4032/9789814411387 ISBN 978-981-4411-37-0 (Hardcover), 978-981-4411-38-7 (eBook).

[2] S. Davis, N. Tsagarakis, J. Canderle, D.G. Caldwell, Enhanced modelling and performance in braided

pneumatic muscle actuators, Int. J. Robot. Res. 22 (2003) 213–227.

[3] J.B. Chipka, M.A. Meller, E. Garcia, Efficiency testing of hydraulic artificial muscles with variable

recruitment using a linear dynamometer, in: Bioinspiration, Biomimetics, and Bioreplication, vol. 9429,

International Society for Optics and Photonics, 2015.

[4] M.B. Popovic, C. Onal, G. McCarthy, N. Corso, D. Effraimidis, and B. Jennings (2015) Actuators and

Methods of Use” (Hydro Artificial Muscles). United States Patent and Trademark Office, Assignee

Worcester Polytechnic Institute. Serial No.: 62/011,830. Filed: June 13, 2014. US Patent 20,150,359,698,

2015

Page 3: Actuatorsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_3.pdf · This chapter discusses natural and synthetic muscles as well as other human made actuators. A comprehensive

[5] G. McCarthy, D. Effraimidis, B. Jennings, N. Corso, C. Onal and M. B. Popovic (2014) Hydraulically

actuated muscle (HAM) exo-musculature, in Robot Makers: The Future of Digital Rapid Design and

Fabrication of Robots (RoMa) Workshop, the 2014 Robotics: Science and Systems Conference, Berkeley,

CA, July 12, 2014.

[6] S. Sridar, C.J. Majeika, P. Schaffer, M. Bowers, S. Ueda, A.J. Barth, J.L. Sorrells, J.T. Wu, T. R. Hunt, M.

Popovic, Hydro Muscle—a novel soft fluidic actuator, in: 2016 IEEE International Conference on Robotics

and Automation (ICRA), 2016, , pp. 4014–4021.

[7] C.P. Chou, B. Hannaford, Measurement and modeling of McKibben pneumatic artificial muscles, IEEE

Trans. Robot. Automat. 12 (1996) 90–102.

[8] T. Noritsugu, H. Yamamoto, D. Sasaki, M. Takaiwa, Wearable power assist device for hand grasping

using pneumatic artificial rubber muscle, in: SICE Annual Conference in Sapporo, August 4–6, 2004, p. 420.

[9] T.Noritsugu, et al.,Wearable power assist device for standing up motion using pneumatic rubber

artificial muscles, J. Robot. Mechatron. 19 (6) (2007) 619–628.

[10] R. Deimel, O. Brock, A compliant hand based on a novel pneumatic actuator, in: 2013 IEEE

International Conference on Robotics and Automation, ICRA, 2013, , pp. 2047–2053.

[11] K.C. Galloway, P. Polygerinos, C.J. Walsh, R.J. Wood, Mechanically programmable bend radius for

fiber-reinforced soft actuators, in: 16th International Conference on Advanced Robotics (ICAR), 2013

Montevideo, Uruguay, 2013, , pp. 1–6.

[12] O. Larsson, “Flexible actuator”, Assignee Komatsu Ltd, Tokyo, Japan, US Patent Number 4,777,868,

Date of Patent Oct. 18, 1988.

[13] A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators, Nat. Commun. 8 (1) (2017) 596.

[14] M. Bowers, C. Harmalkar, A. Agrawal, A. Kashyap, J. Tai, M. Popovic, Design and test of biologically

inspired multi-fiber Hydro Muscle actuated ankle, in: Proceedings of 2017 IEEE International Workshop

on Advanced Robotics and its Social Impacts, March 8–10, 2017, University of Texas at Austin, Austin, TX,

USA, 2017.

[15] M. Popovic, S. Sridar, C. Majeika, N. Deisadze, and E. Giancarlo (2016) “Variable Stiffness Devices and

Methods of Use”. United States Patent and Trademark Office, Assignee Worcester Polytechnic Institute.

US Patent App. 15/154,443, 2016.

[16] M. Bowers, C. Harmalkar, S. Sridar, C. Majeika, C. Kaan, G. Iannacchione, M. Popovic, An approach to

HydroBone and other variable stiffness structures, in: Proceedings of The 20th International Conference

on Composite Structures (ICCS20) in Paris, France, 4–7 September, 2017.

[17] Soft Robotics Lab, Worcester Polytechnic Institute, http://softrobotics.wpi.edu/ (retrieved 15.03.18).

[18] M.A. Larrier J.r, E. Saint-Elme, C. Kracinovich, D. Renshaw, Accurate Prosthetic Hand, in: WPI Major

Qualifying Project, Advisor Marko Popovic, Co-advisor Karen Troy, Worcester, Polytechnic Institute,

Worcester, MA, 2017.

Page 4: Actuatorsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_3.pdf · This chapter discusses natural and synthetic muscles as well as other human made actuators. A comprehensive

[19] E. Saint-Elme, M.A. Larrier Jr., C. Kracinovich, D. Renshaw, K. Troy, M. Popovic, Design of a biologically

accurate prosthetic hand, in: IEEE RAS International Symposium onWearable & Rehabilitation Robotics

Houston, TX November 5–8, 2017.

[20] S.B. Kesner, L. Jentoft, F.L. Hammond, R.D. Howe, M.B. Popovic, Design considerations for an active

soft orthotic system for shoulder rehabilitation, in: 33rd Annual International IEEE EMBS Conference,

August 30–September 02, 2011, Boston, USA, 2011.

[21] I. Galiana, F.L. Hammond, R.D. Howe, M.B. Popovic, Wearable soft robotic device for post-stroke

shoulder rehabilitation: identifying misalignments, in: 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, October 7–12, 2012, Portugal, 2012.

[22] T. Hunt, C. Berthelette, G.S. Iannacchione, S. Koehler, M.B. Popovic, Soft robotics variable stiffness

exo-musculature, one-to-many concept, and advanced clutches, in: IEEE ICRA 2012 Workshop: Variable

Stiffness Actuators Moving the Robots of Tomorrow, St. Paul, Minnesota, May, vol. 14. 2012.

[23] T. Hunt, C. Berthelette, M.B. Popovic, Linear one-to-many (OTM) system, in: IEEE International

Conference on Technologies for Practical Robot Applications (TePRA), 2013, IEEE, 2013, , pp. 1–6.

[24] M. B. Popovic, C. J. Berthelette, M. DiPinto, J. D. Sareault, and T. R. Hunt “Actuation Systems and

Methods” U.S. Patent Application No. 14/903,126 Filed January 6, 2016. U.S. Patent No. 9,879,767 Issued

January 30, 2018.

[25] C.D. Onal, X. Chen, G.M. Whitesides, D. Rus, Soft mobile robots with on-board chemical pressure

generation, in: Robotics Research, Springer, Cham, 2017, , pp. 525–540.

[26] R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain

greater than 100%, Science 287 (5454) (2000) 836–839.

[27] Y. Bar-Cohen, Electroactive polymers as artificial muscles: a review, J. Spacecraft Rockets 39 (6) (2002)

822–827.

[28] Bar-Cohen, Electroactive polymers as artificial muscles—reality and challenges, Adv. Piezoelectr.

Mater. (2001) 1–13.

[29] G. Kovacs, L. During, S. Michel, G. Terrasi, Stacked dielectric elastomer actuator for tensile force

transmission, Sensors Actuators A: Phys. 155 (2009) 299–307.

[30] G.A. Pratt, M.M. Williamson, Series elastic actuators, in: Intelligent Robots and Systems 95. IEEE/RSJ

International Conference on “Human Robot Interaction and Cooperative Robots”, Proceedings, 1995, Vol.

1, 1995, pp. 399–406.

[31] T. Morita, S. Sugano, Design and development of a new robot joint using a mechanical impedance

adjuster, ICRA (1995) 2469–2475.

[32] R. Van Ham, T.G. Sugar, B. Vanderborght, K.W. Hollander, D. Lefeber, Compliant actuator designs,

IEEE Robot. Autom. Mag. 16 (3) (2009).

[33] B. Vanderborght, A. Albu-Schaffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M. G. Catalano, O.

Eiberger, W. Friedl, G. Ganesh, M. Garabini, Variable impedance actuators: a review, Robot. Autonom.

Syst. 61 (12) (2013) 1601–1614.

Page 5: Actuatorsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_3.pdf · This chapter discusses natural and synthetic muscles as well as other human made actuators. A comprehensive

[34] M. Laffranchi, N. Tsagarakis,D.G. Caldwell, A compact compliant actuator (CompAct™) with variable

physical damping, in: IEEE International Conference on Robotics and Automation (ICRA), 2011, May, pp.

4644–4650.

[35] T. Verstraten, P. Beckerle, R. Furnemont, G. Mathijssen, B. Vanderborght, D. Lefeber, Series and

parallel elastic actuation: impact of natural dynamics on power and energy consumption, Mech. Mach.

Theory 102 (2016) 232–246.

[36] M. Zinn, B. Roth, O. Khatib, J.K. Salisbury, A new actuation approach for human friendly robot design,

Int. J. Robot. Res. 23 (4–5) (2004) 379–398.

[37] M. Zinn,O. Khatib, B. Roth, J.K. Salisbury, Playing it safe [human-friendly robots], IEEE Robot. Autom.

Mag. 11 (2) (2004) 12–21.

[38] P. Beckerle, J. Wojtusch, S. Rinderknecht, O. von Stryk, Analysis of system dynamic influences in

robotic actuators with variable stiffness, Smart Struct. Syst. 13 (4) (2014) 711–730.

[39] G. Mathijssen, D. Lefeber, B. Vanderborght, Variable recruitment of parallel elastic elements: series–

parallel elastic actuators (SPEA) with dephased mutilated gears, IEEE/ASME Trans.Mechatron. 20 (2)

(2015) 594–602.

[40] G.S. Hegde, Mechatronics, Jones and Bartlett Publishers, 2010.

[41] http://blog.parker.com/know-your-pneumatics-single-or-double-acting-choosing-the-rightcylinder

(retrieved 15.03.18).

[42] http://www.machinedesign.com/linear-motion/what-s-difference-between-pneumatic-

hydraulicand-electrical-actuators (retrieved 15.03.18).

[43] http://blog.parker.com/know-your-pneumatics-rotary-actuator-basics (retrieved 15.03.18).

[44] D.R. Soderquist, Sensory Processes, SAGE, California, 2002.

[45] D. Winter, Biomechanics and Motor Control of Human Movement, John Wiley, New York, 1990.