MPLS Deployment Chapter 1 - Basic

80
Muhammad Syarifuddin, CCNA, CCNP, NRS-1 http://id.linkedin.com/in/syarifuddin

description

Tutorial about MPLS Implementation with Cisco Router, this first of two chapter discuss about What is MPLS, Network Design, P, PE, and CE Router Description, Case Study of IP MPLS Implementation, IP and OSPF Routing Configuration

Transcript of MPLS Deployment Chapter 1 - Basic

Page 1: MPLS Deployment Chapter 1 - Basic

Muhammad Syarifuddin, CCNA, CCNP, NRS-1 http://id.linkedin.com/in/syarifuddin

Page 2: MPLS Deployment Chapter 1 - Basic

Chapter 1 – Basic : http://www.slideshare.net/ariefcakep/mpls-deployment-chapter-1-basic1

Chapter 2 – Services : http://www.slideshare.net/ariefcakep/mpls-deployment-chapter-2-services1

Chapter 3 – Optimization : http://www.slideshare.net/ariefcakep/mpls-deployment-chapter-3-optimization

Page 3: MPLS Deployment Chapter 1 - Basic

Multiprotocol Label Switching (MPLS) is a mechanism in high-performance telecommunications networks that directs data from one network node to the next based on short path labels rather than long network addresses, avoiding complex lookups in a routing table. The labels identify virtual links (paths) between distant nodes rather than endpoints. MPLS can encapsulate packets of various network protocols. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

Page 4: MPLS Deployment Chapter 1 - Basic

In 1996 a group from Ipsilon Networks proposed a "flow management protocol". Their "IP Switching" technology, which was defined only to work over ATM, did not achieve market dominance. Cisco Systems introduced a related proposal, not restricted to ATM transmission, called "Tag Switching". It was a Cisco proprietary proposal, and was renamed "Label Switching". It was handed over to the Internet Engineering Task Force (IETF) for open standardization. The IETF work involved proposals from other vendors, and development of a consensus protocol that combined features from several vendors' work.

Page 5: MPLS Deployment Chapter 1 - Basic

MPLS brings the following benefits to IP networks: › Improved up-time – By providing alternative network paths › Improved bandwidth utilization – By allowing for multiple traffic

types to traverse the network › Reduced network congestion – By utilizing optional paths for

traffic to avoid congestion › Improved end user experience – By allowing multiple Classes of

Service to different types of traffic such as VOIP › Traffic engineering - the ability to set the path that traffic will

take through the network and the ability to set performance characteristics for a class of traffic.

› Layer 2 transport - new standards allow service providers to carry Layer 2 services including Ethernet, Frame Relay and ATM over an IP/MPLS core

Page 6: MPLS Deployment Chapter 1 - Basic

Beside of its benefits, MPLS have several issues :

The carrier has to play a role in configuration of the overall network.

MPLS network does not offer any inherent data protection and improper implementation can open your network to vulnerabilities.

Possibilities to “peek up” end user traffic from Service Provider Network

Page 7: MPLS Deployment Chapter 1 - Basic

Label switching through label path

PE PE P

P

P

P

Label Path

P router digunakan di sisi backbone,

PE router digunakan di sisi ujung (edge) yang

memberikan service ke CE,

CE adalah end user. CE dapat berupa router, server,

telco equipment (bsc, rnc, msc/mgw, bts, radio), dll.

CE

CE

CE

Page 8: MPLS Deployment Chapter 1 - Basic

LABEL SWITCHING

IP IP label

PE PE

• Label swapping networking technology that forwards packets

over multiple, underlying layer 2 media.

• Integrates layer 2 switching and layer 3 routing by linking the layer 2

infrastructure with layer 3 routing characteristics.

P P

IP label IP label IP

Label Path

• Layer 3 routing occurs only at the edge of the network, and layer 2

switching takes over in the MPLS core.

IP Forwarding IP Forwarding

CE CE

Page 9: MPLS Deployment Chapter 1 - Basic

Ethernet PPP

‘Shim’ Label(s)

Label Exp. S TTL

Label: Label Value, 20 bits (0-15 reserved)

Exp.: Experimental, 3 bits (Class of Service)

S: Bottom of Stack, 1 bit (1 = last entry in label stack)

TTL: Time to Live, 8 bits

Layer 2 Header

(eg. PPP, 802.3)

••• Network Layer Header

and Packet (eg. IP)

4 Octets

MPLS ‘Shim’ Headers (1-n)

1 n

Label Stack

Entry Format

Packet-based encoding

Page 10: MPLS Deployment Chapter 1 - Basic

› Push

– Push the first label on the packet or

– Push a label on existing label stack

– For IP packets, set the TTL value of the label to the value in the IP packet

› Pop

– Remove the top label from the packet

– Copy the TTL value of the label to the TTL value of the IP Packet

Swap (applies to LSR only)

Combination of POP and PUSH operation

Copy the TTL value from incoming label to new label after decrementing it

Page 11: MPLS Deployment Chapter 1 - Basic

• FEC = “A subset of packets that are all treated the same way by a router”

• The concept of FECs provides for a great deal of flexibility and scalability

• In conventional routing, a packet is assigned to a FEC at each hop (i.e. L3

look-up), in MPLS it is only done once at the network ingress.

Packets are destined for different address prefixes, but can be

mapped to common path

LSR LSR LER LER

LSP

IP1

IP2

IP1

IP2

IP1 #L1

IP2 #L1

IP1 #L2

IP2 #L2

IP1 #L3

IP2 #L3

IP1 #L2

IP2 #L2

IP1 #L3

IP2 #L3

IP1 IP1

Page 12: MPLS Deployment Chapter 1 - Basic

Label protocols in MPLS were divided in three items: ◦ LSP (Label Switched Patch)

Is static label distribution that need to be created manually in P & PE Routers.

◦ LDP (Label Distribution Protocol)

Dynamic protocol that automatically generates label path between Routers

◦ RSVP (Resource Reservation Protocols)

Provide better reroute time failure

Page 13: MPLS Deployment Chapter 1 - Basic

› All Routers are configured manually with labels

› No signaling is required

1 2

3 4

5

47.1

123

Dest Label

Out

47.1 123

Int

In

-

Int

Out

2

123

456

456

Dest Label

In

47.1 123

Int

In

3

Int

Out

4

Label

Out

456

Dest

47.1 456 5 -

Label

In

Int

In

Int

Out

Page 14: MPLS Deployment Chapter 1 - Basic

ESR

or

Core Router

ESR

ESR

ESR

ESR

ESR ESR

ESR

LSP Primary

Path

LSP Secondary

Path (Non-Fate

Sharing )

• Secondary Path LSPs can be:

• Standby (preconfigured)

• Signaled and set up upon failure of the primary LSP

Hello REQ

Hello ACK

PATH

Refresh

RESV

Refresh

Page 15: MPLS Deployment Chapter 1 - Basic

ESR

or

Core Router

ESR

ESR

ESR

ESR

ESR ESR

ESR

LSP Primary

Path

LSP Secondary

Path (Non-Fate

Sharing )

• When Primary Path Fails

• The first secondary path becomes active

• Attempts are made to restore primary path (retry timer)

• Software will revert back to primary when it recovers

RESV

ERR

PATH

ERR

Hello REQ

Hello REQ

Page 16: MPLS Deployment Chapter 1 - Basic

Difficult to quickly restore connectivity using traditional IP protocols because:

Failures are not detecting quickly

Takes time to compute an alternate route

Takes time to signal an alternate LSP and update forwarding tables

Page 17: MPLS Deployment Chapter 1 - Basic

Protected

LSP

R1

R2

R3

R4

R5 R6 R7

R8

R9

Protected LSP: R1>R2>R3>R4>R5

R1’s backup: R1>R6>R7>R8>R3

R2’s backup: R2>R7>R8>R4

R3’s backup: R3>R8>R9>R5

R4’s backup: R4>R9>R5

Page 18: MPLS Deployment Chapter 1 - Basic

R1

R2

R3

R4

R5

R8

R6

R7

R9

Protected LSP 1: R1>R2>R3>R4>R5

Protected LSP 2: R8>R2>R3>R4

Protected LSP 3: R2>R3>R4>R9

Bypass LSP Tunnel: R2>R6>R7>R4

Page 19: MPLS Deployment Chapter 1 - Basic

One of several standardised label distribution protocol

draft-ietf-mpls-ldp-09.txt A set of procedures and messages to distribute

mappings between labels and FECs Two LSRs which use LDP to exchange

label/FEC mapping information are known as "LDP Peers"

Peers exchange LDP messages Uses TLV encoded message structure

Page 20: MPLS Deployment Chapter 1 - Basic

Discovery messages Used to discover and maintain the presence of new peers Hello packets (UDP) sent to all-routers-in-subnet multicast

address Once neighbor is discovered, the LDP session is established

over TCP Runs over UDP port number 646

Session messages Establish, maintain and terminate LDP sessions Runs over TCP port number 646

Advertisement messages Create, modify, delete label mappings

Notification messages Error signalling

Page 21: MPLS Deployment Chapter 1 - Basic

NTW NTW NTW NTW NTW NTW

RTM

Route x use 1.1.1.2

Form an Adjacency Form an Adjacency Form an Adjacency

Maintain LDP session Maintain LDP session Maintain LDP session

Use label 1 to reach x Use label 7 to reach x Use label 9 to reach x

RTM

Route x use label 1

RTM

Route x use label 7

RTM

Route x use label 9

1

2

3

SR-A SR-B SR-C SR-D

NTW Network Link RTM = route mapping

Alternative to MPLS /RSVP-TE signaling to obtain routing labels.

Page 22: MPLS Deployment Chapter 1 - Basic

RSVP uses two message types for resource reservation

◦ Sender sends PATH message towards receiver indicating characteristics of the traffic

Each Router along the path makes note of the traffic type

◦ Receiver sends RESV message back towards sender

Each Router reserves the resources requested (if available) for the micro-flow

◦ Path Refresh and RESV Refresh messages are sent periodically

1 2

3 4

5 ResV: 10.10.10.1

Path Refresh

Resv Conf

ResV Refresh

Path Tear

Resv Error

ResV Tear

Path Error

Path: 30.30.30.1

ResV: 10.10.10.1

Path: 30.30.30.1

ILER

ELER

Page 23: MPLS Deployment Chapter 1 - Basic

RSVP-TE has extensions to support operation with MPLS: ◦ Provide the mechanism to setup an explicitly routed LSP that could

differ from the normal path calculated by the IGP.

◦ Perform downstream on demand label allocation, distribution, and binding among LSRs in the path, thus establishing path state in network nodes.

◦ Optionally provide resource reservations (bandwidth) along the path to meet the requirements of the traffic flow.

◦ Provide users information about the actual path traversed by the LSP.

◦ LSP preemption based on administrative policy control.

◦ Loop detection and avoidance during the initial LSP set-up and rerouting an existing LSP.

◦ Monitor and maintain the state of an explicitly routed LSP

Page 24: MPLS Deployment Chapter 1 - Basic

RSVP Refresh Reduction

◦ PATH Refresh and RESV Refresh are sent out for each LSP

◦ Multiple messages are bundled into a single message to reduce network overhead

◦ Each bundled message contains Multiple Message-ids of the associated PATH and RESV messages for which the state needs to be refreshed

Page 25: MPLS Deployment Chapter 1 - Basic

ESR

or

Core Router

ESR

ESR

ESR

ESR

ESR ESR

ESR

Primary LSP

Secondary LSP Hot Standby Detour

Hello REQ

Hello ACK

› RSVP Failure Detection › Hello Message exchanged between neighbors

› Enables failure detection in milliseconds

Page 26: MPLS Deployment Chapter 1 - Basic

Study Case, General Requirement : Customer requested to use Cisco Router as the platform. To keep compatibility with non-Cisco devices,routing

protocol that will be used is OSPF. Label Protocol = LDP. Every region has different OSPF area to keep ospf

calculation locally. Area 0 for backbone PR, area 1 for jakarta, area 2 for east java, and area 3 for borneo.

Ring topology will be used for P router. From jakarta1 – jakarta2 - surabaya1 - banjarmasin1 – jakarta1.

To keep redundancy, there will be 2 P router in jakarta that will serve as master & backup.

Page 27: MPLS Deployment Chapter 1 - Basic

2 P routers in jakarta were connected to 5 PE (2 jakarta, 1 bekasi, 1 bogor, 1 tangerang), 1 P surabaya connected to 3 PE (1 surabaya, 1 malang, 1 madiun), 1 P banjarmasin connected with 1 PE in the same place.

Due to services that will be delivered from PEJKTKPI01 & PEJKTKPI02 were critical, to provide redundancy, PEJKTKPI01 have direct link to PEJKTKPI02

PRJKTKPI01, PRJKTKPI02, PEJKTKPI01, PEJKTKPI02 were placed in same room

Page 28: MPLS Deployment Chapter 1 - Basic

East Java Area were designed to use ring topology with distribution point to P surabaya. P surabaya – PE surabaya – PE malang – PE madiun – P surabaya.

For Borneo area, there is only 1 P & 1 PE. We create 2 interface point to point for redundancy

Page 29: MPLS Deployment Chapter 1 - Basic

Loopback IP is used to stabilize

OSPF, BGP, MPLS LDP,

and many router processes

Device Ip Loopback

PRJ KTKPI 01 10.0.0.1/32

PRJ KTKPI 02 10.0.0.2/32

PEJ KTKPI 01 10.0.0.3/32

PE JKTKPI 02 10.0.0.4/32

PE BTNTGR 0 1 10.0.0. 5 /32

PE JBRBKS01 10.0.0. 6 /32

PE JBRBGR 0 1 10.0.0. 7 /32

P RJTMSBY01 10.0.0. 8 /32

PEJ TMSBY01 10.0.0. 9 /32

PEJTBMLG01 10.0.0. 10 /32

PEJTMMDN01 10.0.0. 11 /32

PRKALBJM01 10.0.0. 12 /32

PEKALBJM01 10.0.0. 13 /32

Loopback IP Design

Page 30: MPLS Deployment Chapter 1 - Basic

Area 3 Kalimantan

Area 2 Jatim

Area 1 Jakarta

Area 0 CORE

10.10.10.1/3010.10.10.2/30 10.10.10.5/30

10.10.10.6/30

10.10.10.9/30

10.10.10.10/30

10.10.10.13/30

10.10.10.14/30

PRJKTKPI02

10.0.0.2/32

PRJKTKPI01

10.0.0.1/32

PEBTNTGR01

10.0.0.5/32 PEJBRBGR01

10.0.0.7/32

PEJBRBKS01

10.0.0.6/32

PRJTMSBY01

10.0.0.8/32

PEJTMSBY01

10.0.0.9/32

PEJTMMDN01

10.0.0.11/32

PEJTMMLG01

10.0.0.10/32

10.10.20.2/30

10.10.20.1/30

10.10.20.6/30

10.10.20.5/30

10.10.20.10/3010.10.20.9/30

10.10.20.14/3010.10.20.13/30

10.10.20.18/30

10.10.20.17/30

10.10.20.21/30

10.10.20.22/30

10.10.30.2/30

10.10.30.1/30

10.10.30.6/30

10.10.30.5/30

10.10.30.13/30

10.10.30.14/30

10.10.30.9/30

10.10.30.10/30

10.10.40.1/30

10.10.40.2/30

Tangerang

Jakarta

Bogor Bekasi

Jakarta

Jakarta

Jakarta

Banjarmasin

Banjarmasin

Surabaya

Surabaya

Madiun

Malang

Design by : Muhammad SyarifuddinRevision : 4

Project : MPLS Core Network

PEJKTKPI01

10.0.0.3/32PEJKTKPI02

10.0.0.4/32

10.10.20.26/30

10.10.20.25/30

PRKALBJM01

10.0.0.12/32

PEKALBJM01

10.0.0.13/32

10.10.40.5/30

10.10.40.6/30

Page 31: MPLS Deployment Chapter 1 - Basic

Area 0 CORE

10.10.10.1/30

10.10.10.2/3010.10.10.5/30

10.10.10.6/30

10.10.10.9/30

10.10.10.10/30

10.10.10.13/30

10.10.10.14/30

PRJKTKPI02

10.0.0.2/32

PRJKTKPI01

10.0.0.1/32

PRJTMSBY01

10.0.0.8/32

PRKALBJM01

10.0.0.12/32

Jakarta

Jakarta

Banjarmasin

Surabaya

Page 32: MPLS Deployment Chapter 1 - Basic

Area 1 Jakarta

10.10.10.1/3010.10.10.2/30

PRJKTKPI02

10.0.0.2/32

PRJKTKPI01

10.0.0.1/32

PEBTNTGR01

10.0.0.5/32 PEJBRBGR01

10.0.0.7/32

PEJBRBKS01

10.0.0.6/32

10.10.20.2/30

10.10.20.1/30

10.10.20.6/30

10.10.20.5/30

10.10.20.10/3010.10.20.9/30

10.10.20.14/3010.10.20.13/30

10.10.20.18/30

10.10.20.17/30

10.10.20.21/30

10.10.20.22/30

Tangerang

Jakarta

Bogor Bekasi

Jakarta

Jakarta

Jakarta

PEJKTKPI01

10.0.0.3/32PEJKTKPI02

10.0.0.4/32

10.10.20.26/30

10.10.20.25/30

Page 33: MPLS Deployment Chapter 1 - Basic

Area 2 JatimPRJTMSBY01

10.0.0.8/32

PEJTMSBY01

10.0.0.9/32

PEJTMMDN01

10.0.0.11/32

PEJTMMLG01

10.0.0.10/32

10.10.30.2/30

10.10.30.1/30

10.10.30.6/30

10.10.30.5/30

10.10.30.13/30

10.10.30.14/30

10.10.30.9/30

10.10.30.10/30

Surabaya

Surabaya

Madiun

Malang

Page 34: MPLS Deployment Chapter 1 - Basic

Area 3 Kalimantan

10.10.40.1/30

10.10.40.2/30

Banjarmasin

Banjarmasin

PRKALBJM01

10.0.0.12/32

PEKALBJM01

10.0.0.13/32

10.10.40.5/30

10.10.40.6/30

Page 35: MPLS Deployment Chapter 1 - Basic

PR

JKTK

PI0

1

Loopback0 10.0.0.1/32

Fa1/0 To PRJKTKPI02 Fa1/0 10.10.10.1/30 PRJKTKPI02 Fa1/0 10.10.10.2/30

Fa1/1 To PRKALBJM01 Fa1/3 10.10.10.14/30 PRKALBJM01 Fa1/3 10.10.10.13/30

Fa1/2 To PEJKTKPI01 Fa1/1 10.10.20.1/30 PEJKTKPI01 Fa1/1 10.10.20.2/30

Fa1/3 To PEBTNTGR01 Fa1/0 10.10.20.5/30 PEBTNTGR01 Fa1/0 10.10.20.6/30

PR

JKTK

PI0

2

Loopback0 10.0.0.2/32

Fa1/0 To PRJKTKPI01 Fa1/0 10.10.10.2/30 PRJKTKPI01 Fa1/0 10.10.10.1/30

Fa1/1 To PRJTMSBY01 Fa1/3 10.10.10.5/30 PRJTMSBY01 Fa1/3 10.10.10.6/30

Fa1/2 To PEJKTKPI02 Fa1/1 10.10.20.22/30 PEJKTKPI02 Fa1/1 10.10.20.21/30

Fa1/3 To PEJBRBKS01 Fa1/0 10.10.20.18/30 PEJBRBKS01 Fa1/0 10.10.20.17/30

PEJ

KTKP

I01 Loopback0 10.0.0.3/32

Fa1/0 To PEJKTKPI02 Fa1/0 10.10.20.25/30 PEJKTKPI02 Fa1/0 10.10.20.26/30

Fa1/1 To PRJKTKPI01 Fa1/2 10.10.20.2/30 PRJKTKPI01 Fa1/2 10.10.20.1/30

PEJ

KTKP

I02 Loopback0 10.0.0.4/32

Fa1/0 To PEJKTKPI01 Fa1/0 10.10.20.26/30 PEJKTKPI01 Fa1/0 10.10.20.25/30

Fa1/1 To PRJKTKPI02 Fa1/2 10.10.20.21/30 PRJKTKPI02 Fa1/2 10.10.20.22/30

Page 36: MPLS Deployment Chapter 1 - Basic

PEB

TNTG

R01

Loopback0 10.0.0.5/32

Fa1/0 To PRJKTKPI01 Fa1/3 10.10.20.6/30 PRJKTKPI01 Fa1/3 10.10.20.5/30

Fa1/1 To PEJBRBGR01 Fa1/1 10.10.20.9/30 PEJBRBGR01 Fa1/1 10.10.20.10/30

PEJ

BR

BK

S01

Loopback0 10.0.0.6/32

Fa1/0 To PRJKTKPI02 Fa1/3 10.10.20.17/30 PRJKTKPI02 Fa1/3 10.10.20.18/30

Fa1/1 To PEJBRBGR01 Fa1/0 10.10.20.14/30 PEJBRBGR01 Fa1/0 10.10.20.13/30

PEJ

BR

BG

R01

Loopback0 10.0.0.7/32

Fa1/0 To PEJBRBKS01 Fa1/1 10.10.20.13/30 PEJBRBKS01 Fa1/1 10.10.20.14/30

Fa1/1 To PEBTNTGR01 Fa1/1 10.10.20.10/30 PEBTNTGR01 Fa1/1 10.10.20.9/30

Page 37: MPLS Deployment Chapter 1 - Basic

Sura

bay

a

PR

JTM

SBY0

1

Loopback0 10.0.0.8/32

Fa1/0 To PRKALBJM01 Fa1/2 10.10.10.9/30 PRKALBJM01 Fa1/2 10.10.10.10/30

Fa1/1 To PRJKTKPI02 Fa1/1 10.10.10.6/30 PRJKTKPI02 Fa1/1 10.10.10.5/30

Fa1/2 To PEJTMSBY01 Fa1/0 10.10.30.1/30 PEJTMSBY01 Fa1/0 10.10.30.2/30

Fa1/3 To PEJTMMDN01 Fa1/0 10.10.30.14/30 PEJTMMDN01 Fa1/0 10.10.30.13/30

PEJ

TMSB

Y01 Loopback0 10.0.0.9/32

Fa1/0 To PRJTMSBY01 Fa1/2 10.10.30.2/30 PRJTMSBY01 Fa1/2 10.10.30.1/30

Fa1/1 To PEJTMMLG01 Fa1/0 10.10.30.5/30 PEJTMMLG01 Fa1/0 10.10.30.6/30

Mal

ang

PEJ

TMM

LG0

1 Loopback0 10.0.0.10/32

Fa1/0 To PEJTMSBY01 Fa1/1 10.10.30.6/30 PEJTMSBY01 Fa1/1 10.10.30.5/30

Fa1/1 To PEJTMMDN01 Fa1/1 10.10.30.9/30 PEJTMMDN01 Fa1/1 10.10.30.10/30

Mad

iun

PEJ

TMM

DN

01

Loopback0 10.0.0.11/32

Fa1/0 To PRJTMSBY01 Fa1/3 10.10.30.13/30 PRJTMSBY01 Fa1/3 10.10.30.14/30

Fa1/1 To PEJTMMLG01 Fa1/1 10.10.30.10/30 PEJTMMLG01 Fa1/1 10.10.30.19/30

Page 38: MPLS Deployment Chapter 1 - Basic

Ban

jarm

asin

PR

KA

LBJM

01

Loopback0 10.0.0.12/32

Fa1/0 To PRJTMSBY01 Fa1/0 10.10.10.10/30 PRJTMSBY01 Fa1/0 10.10.10.9/30

Fa1/1 To PRJKTKPI01 Fa1/1 10.10.10.13/30 PRJKTKPI01 Fa1/1 10.10.10.14/30

Fa1/2 To PEKALBJM01 Fa1/0 10.10.40.1/30 PEKALBJM01 Fa1/0 10.10.40.2/30

Fa1/3 To PEKALBJM01 Fa1/1 10.10.40.5/30 PEKALBJM01 Fa1/1 10.10.40.6/30

PEK

ALB

JM0

1 Loopback0 10.0.0.13/32

Fa1/0 To PRKALBJM01 Fa1/2 10.10.40.2/30 PRKALBJM01 Fa1/2 10.10.40.1/30

Fa1/1 To PRKALBJM01 Fa1/3 10.10.40.6/30 PRKALBJM01 Fa1/3 10.10.40.5/30

Page 39: MPLS Deployment Chapter 1 - Basic

For implementation, we will use GNS3 to simulate Cisco MPLS Router. And then we can deploy from the Simulator to Real Devices.

Step by step GNS3 Installation: Download GNS3 windows version at

www.gns3.net, choose all in one package. Install GNS3 Attach IOS in GNS3, from menu - edit – IOS

images & hypervisor. *we will use Cisco Router 2691 version

Page 40: MPLS Deployment Chapter 1 - Basic

Point browser to : www.gns3.net

Page 41: MPLS Deployment Chapter 1 - Basic

Install GNS3, use default parameter and follow the installshield wizard.

Page 42: MPLS Deployment Chapter 1 - Basic

There are 2 steps that needs to be done before you can use GNS3 :

1. Configure and test dynamips, emulation software that will run cisco IOS

2. Add IOS to the GNS3 directory

Page 43: MPLS Deployment Chapter 1 - Basic

Usually if we use the all-in-one package, there is no need to configure dynamips, but just in case if we install the standalone package, then we can setup from menu edit - preferences

Page 44: MPLS Deployment Chapter 1 - Basic

Second step is add IOS images to GNS3, can be accessed from Menu – Edit – IOS images and hypervisors.

Click image file, and then point it to your IOS images, set the platform, model, and RAM.

Page 45: MPLS Deployment Chapter 1 - Basic

One of the problem when using GNS3 is, our PC/Laptop will be forced to run many routers at a time. In fact, our PC/Laptop doesn’t have resources to provide the router feature and specification. But in this case, GNS3 has provide idle-pc feature that can barely reduce processor load when running router simulation..

Page 46: MPLS Deployment Chapter 1 - Basic

After you create GNS3 topology based on design, try to run one of the Router, by using right click, and then click Start.

Page 47: MPLS Deployment Chapter 1 - Basic

After the router is running, the router interface color will changed to green. The next step, right click, choose Idle PC.

Page 48: MPLS Deployment Chapter 1 - Basic

And then GNS3 will calculate the best idle-pc that fits for you. After calculation finish, choose one of the dropdown list. Choose the best value, marked by star sign (*), if no star sign exist, try one by one until you find good one. And the task manager processes will be so much reduced.

Page 49: MPLS Deployment Chapter 1 - Basic

After you finish setup idle-pc, re-check processor utilization by opening the task-manager.

Before and After

Page 50: MPLS Deployment Chapter 1 - Basic
Page 51: MPLS Deployment Chapter 1 - Basic

VPCS is virtual PC simulator that emulates pc in the GNS3, with VPCS we can save lot of resources than using router/vm-ware based virtual pc.

With VPCS, we can do standard troubleshooting like ping, and traceroute.

VPCS can be downloaded at : http://sourceforge.net/projects/vpcs/

Simple VPCS tutorial can be found at : http://rednectar.net/gns3-workbench/vpcs-tutorial/

Page 52: MPLS Deployment Chapter 1 - Basic

After you download VPCS, put it on the d:\vpcs folder to make it easy to access the file.

Page 53: MPLS Deployment Chapter 1 - Basic

To connect VPCS to GNS3, you need to create new symbol through menu-edit-Symbol Manager

Page 54: MPLS Deployment Chapter 1 - Basic

On the left pane, click computer, and then click right arrow, on the right top field, fill PC on the name, and choose Cloud for the type. Click Apply and OK.

1

2

3

4

Page 55: MPLS Deployment Chapter 1 - Basic

Drag the new PC icon to the topology, right click, and choose configure

Page 56: MPLS Deployment Chapter 1 - Basic

On the NIO UDP tab, fill the local port and remote port, leave the remote host to default 127.0.0.1, and then click add.

Page 57: MPLS Deployment Chapter 1 - Basic

Each NIO UDP local port/remote port represent the VPCS number.

VPCS can support 9 virtual PCs to accomodate your needs

Please note below numbering : 30000 -> vpcs number 1 30001 -> vpcs number 2 30002 -> vpcs number 3 --- 30009 -> vpcs number 9

Page 58: MPLS Deployment Chapter 1 - Basic

To connect VPCS to Router, click on add link menu in GNS3, choose manual interface, point it to the desired router interface, and then connect it to vpcs nio udp as described in picture below.

Page 59: MPLS Deployment Chapter 1 - Basic

You can open command prompt, point to the vpcs folder, and run vpcs program. Because we use nio udp 30000, we should press 1 (one) in vpcs to enter virtual pc number 1

Press ? to see all available commands.

Page 60: MPLS Deployment Chapter 1 - Basic

Its time to configure our routers, by right click on the router, click console.

Page 61: MPLS Deployment Chapter 1 - Basic

Type “enable” to enter privileged mode, and then “configure terminal” to enter global configuration mode.

Every router has different configuration, and don’t forget to setup the loopback IP Address

Page 62: MPLS Deployment Chapter 1 - Basic

PRJKTKPI01:

hostname PRJKTKPI01

interface Loopback0

ip address 10.0.0.1 255.255.255.255

!

interface FastEthernet0/0

description to PRJKTKPI02 f0/0

ip address 10.10.10.1 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PRKALBJM01 f0/1

ip address 10.10.10.14 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet1/0

description to PEJKTKPI01 f0/1

no switchport

ip address 10.10.20.1 255.255.255.252

duplex full

speed 100

!

interface FastEthernet1/1

description to PEBTNTGR01 f0/0

no switchport

ip address 10.10.20.5 255.255.255.252

duplex full

speed 100

!

PRJKTKPI02:

hostname PRJKTKPI02

interface Loopback0

ip address 10.0.0.2 255.255.255.255

!

interface FastEthernet0/0

description to PRJKTKPI01 f0/0

ip address 10.10.10.2 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PRJTMSBY01 f0/1

ip address 10.10.10.5 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet1/0

description to PEJKTKPI02 f0/1

no switchport

ip address 10.10.20.22 255.255.255.252

duplex full

speed 100

!

interface FastEthernet1/1

description PEJBRBKS01 f0/0

no switchport

ip address 10.10.20.18 255.255.255.252

duplex full

speed 100

!

PEJKTKPI01:

hostname PEJKTKPI01

interface Loopback0

ip address 10.0.0.3 255.255.255.255

!

interface FastEthernet0/0

description to PEJKTKPI02 f0/0

ip address 10.10.20.25 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PRJKTKPI01 f1/0

ip address 10.10.20.2 255.255.255.252

speed 100

full-duplex

PEJKTKPI02:

hostname PEJKTKPI02

interface Loopback0

ip address 10.0.0.4 255.255.255.255

!

interface FastEthernet0/0

description PEJKTKPI01 f0/0

ip address 10.10.20.26 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description PRJKTKPI02 f1/0

ip address 10.10.20.21 255.255.255.252

speed 100

full-duplex

Page 63: MPLS Deployment Chapter 1 - Basic

PEBTNTGR01:

hostname PEBTNTGR01

interface Loopback0

ip address 10.0.0.5 255.255.255.255

!

interface FastEthernet0/0

description to PRJKTKPI01 f1/1

ip address 10.10.20.6 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PEJBRBGR01 f0/1

ip address 10.10.20.9 255.255.255.252

speed 100

full-duplex

!

PEJBRBGR01:

hostname PEJBRBGR01

interface Loopback0

ip address 10.0.0.7 255.255.255.255

!

interface FastEthernet0/0

description to PEJBRBKS01 f0/1

ip address 10.10.20.13 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PEBTNTGR01 f0/1

ip address 10.10.20.10 255.255.255.252

speed 100

full-duplex

!

PEJBRBKS01:

hostname PEJBRBKS01

interface Loopback0

ip address 10.0.0.6 255.255.255.255

!

interface FastEthernet0/0

description to PRJKTKPI02 f1/1

ip address 10.10.20.17 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PEJBRBGR01 f0/0

ip address 10.10.20.14 255.255.255.252

speed 100

full-duplex

!

Page 64: MPLS Deployment Chapter 1 - Basic

PRJTMSBY01:

hostname PRJTMSBY01

interface Loopback0

ip address 10.0.0.8 255.255.255.255

!

interface FastEthernet0/0

description to PRKALBJM01 f0/0

ip address 10.10.10.9 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PRJKTKPI02 f0/1

ip address 10.10.10.6 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet1/0

description to PEJTMSBY01 f0/0

no switchport

ip address 10.10.30.1 255.255.255.252

duplex full

speed 100

!

interface FastEthernet1/1

description to PEJTMMDN01 f0/0

no switchport

ip address 10.10.30.14 255.255.255.252

duplex full

speed 100

!

PEJTMSBY01:

hostname PEJTMSBY01

interface Loopback0

ip address 10.0.0.9 255.255.255.255

!

interface FastEthernet0/0

description to PRJTMSBY01 f1/0

ip address 10.10.30.2 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PEJTMMLG01 f0/0

ip address 10.10.30.5 255.255.255.252

speed 100

full-duplex

!

Page 65: MPLS Deployment Chapter 1 - Basic

PEJTMMLG01:

hostname PEJTMMLG01

interface Loopback0

ip address 10.0.0.10 255.255.255.255

!

interface FastEthernet0/0

description to PEJTMSBY01 f0/1

ip address 10.10.30.6 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PEJTMMDN01 f0/1

ip address 10.10.30.9 255.255.255.252

speed 100

full-duplex

PEJTMMDN01:

hostname PEJTMMDN01

interface Loopback0

ip address 10.0.0.11 255.255.255.255

!

interface FastEthernet0/0

description to PRJTMSBY01 f1/1

ip address 10.10.30.13 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PEJTMMLG01 f0/1

ip address 10.10.30.10 255.255.255.252

speed 100

full-duplex

!

Page 66: MPLS Deployment Chapter 1 - Basic

PRKALBJM01:

hostname PRKALBJM01

interface Loopback0

ip address 10.0.0.12 255.255.255.255

!

interface FastEthernet0/0

description to PRJTMSBY01 f0/0

ip address 10.10.10.10 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PRJKTKPI01 f0/1

ip address 10.10.10.13 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet1/0

description to PEKALBJM01 f0/0

no switchport

ip address 10.10.40.1 255.255.255.252

duplex full

speed 100

!

interface FastEthernet1/1

description to PEKALBJM01 f0/1

no switchport

ip address 10.10.40.5 255.255.255.252

duplex full

speed 100

PEKALBJM01:

hostname PEKALBJM01

interface Loopback0

ip address 10.0.0.13 255.255.255.255

!

interface FastEthernet0/0

description to PRKALBJM01 f1/0

ip address 10.10.40.2 255.255.255.252

speed 100

full-duplex

!

interface FastEthernet0/1

description to PRKALBJM01 f1/1

ip address 10.10.40.6 255.255.255.252

speed 100

full-duplex

Page 67: MPLS Deployment Chapter 1 - Basic

OK, after finishing interface configuration setup. Don’t forget to save it by typing: “copy running-config startup-config”. And then do verification on each router, following below procedure. This verification step is a MUST, otherwise the next step will be failed. Such as OSPF, MPLS, and MPLS VPN.

Page 68: MPLS Deployment Chapter 1 - Basic

Configuration verification : from privileged mode, type “show run” check within interface, make sure configuration were entered correctly.

Page 69: MPLS Deployment Chapter 1 - Basic

Interface verification: from privileged mode, type “show ip interface brief”, or “show interface”, make sure we already setup the IP Address, and UP, whether by status or protocol.

Page 70: MPLS Deployment Chapter 1 - Basic

Connectivity verification, do ping to directly connected neighbor. And make sure all were giving reply.

Page 71: MPLS Deployment Chapter 1 - Basic

IP routing verification, final step, make sure loopback IP, and neighbor IP were shown in routing table. The “C” sign indicate direct connection to neighbor interface and loopback interface.

Page 72: MPLS Deployment Chapter 1 - Basic

Format ospf routing can be described below: Router>enable Router#configure terminal Router(config)#router ospf x x is the ospf process number Router(config-router)#network A.B.C.D W.X.Y.Z area y

ABCD= network address, WXYZ= wildcard mask,y = area Router(config-router)#

Insert all network interfaces IP Address that will be

processed in OSPF process, including the Loopback IP Address.

Page 73: MPLS Deployment Chapter 1 - Basic

PRJKTKPI01:

router ospf 10

log-adjacency-changes

network 10.0.0.1 0.0.0.0 area 0

network 10.10.10.0 0.0.0.3 area 0

network 10.10.10.12 0.0.0.3 area 0

network 10.10.20.0 0.0.0.3 area 1

network 10.10.20.4 0.0.0.3 area 1

!

PRJKTKPI02:

router ospf 10

log-adjacency-changes

network 10.0.0.2 0.0.0.0 area 0

network 10.10.10.0 0.0.0.3 area 0

network 10.10.10.4 0.0.0.3 area 0

network 10.10.20.20 0.0.0.3 area 1

network 10.10.20.16 0.0.0.3 area 1

!

PEJKTKPI01:

router ospf 10

log-adjacency-changes

network 10.0.0.3 0.0.0.0 area 1

network 10.10.20.0 0.0.0.3 area 1

network 10.10.20.24 0.0.0.3 area 1

!

PEJKTKPI02:

router ospf 10

log-adjacency-changes

network 10.0.0.4 0.0.0.0 area 1

network 10.10.20.20 0.0.0.3 area 1

network 10.10.20.24 0.0.0.3 area 1

!

PEBTNTGR01:

router ospf 10

log-adjacency-changes

network 10.0.0.5 0.0.0.0 area 1

network 10.10.20.4 0.0.0.3 area 1

network 10.10.20.8 0.0.0.3 area 1

!

PEJBRBGR01:

router ospf 10

log-adjacency-changes

network 10.0.0.7 0.0.0.0 area 1

network 10.10.20.8 0.0.0.3 area 1

network 10.10.20.12 0.0.0.3 area 1

!

PEJBRBKS01:

router ospf 10

log-adjacency-changes

network 10.0.0.6 0.0.0.0 area 1

network 10.10.20.12 0.0.0.3 area 1

network 10.10.20.16 0.0.0.3 area 1

!

PRJTMSBY01:

router ospf 10

log-adjacency-changes

network 10.0.0.8 0.0.0.0 area 0

network 10.10.10.4 0.0.0.3 area 0

network 10.10.10.8 0.0.0.3 area 0

network 10.10.30.0 0.0.0.3 area 2

network 10.10.30.12 0.0.0.3 area 2

!

PEJTMSBY01:

router ospf 10

log-adjacency-changes

network 10.0.0.9 0.0.0.0 area 2

network 10.10.30.0 0.0.0.3 area 2

network 10.10.30.4 0.0.0.3 area 2

!

Page 74: MPLS Deployment Chapter 1 - Basic

PEJTMMLG01:

router ospf 10

log-adjacency-changes

network 10.0.0.10 0.0.0.0 area 2

network 10.10.30.4 0.0.0.3 area 2

network 10.10.30.8 0.0.0.3 area 2

!

PEJTMMDN01:

router ospf 10

log-adjacency-changes

network 10.0.0.11 0.0.0.0 area 2

network 10.10.30.8 0.0.0.3 area 2

network 10.10.30.12 0.0.0.3 area 2

!

PRKALBJM01:

router ospf 10

log-adjacency-changes

network 10.0.0.12 0.0.0.0 area 0

network 10.10.10.8 0.0.0.3 area 0

network 10.10.10.12 0.0.0.3 area 0

network 10.10.40.0 0.0.0.3 area 3

network 10.10.40.4 0.0.0.3 area 3

!

PEKALBJM01:

router ospf 10

log-adjacency-changes

network 10.0.0.13 0.0.0.0 area 3

network 10.10.40.0 0.0.0.3 area 3

network 10.10.40.4 0.0.0.3 area 3

!

Page 75: MPLS Deployment Chapter 1 - Basic

Don’t forget to save the configuration : “copy running-config startup-config”. Also don’t forget to do verification on each router. This verification step is very important.

Page 76: MPLS Deployment Chapter 1 - Basic

First verification is neighbor establishment, this step is used to check whether the ospf session between neighbor router already established or not. Can be done by typing “show ip ospf neighbor”. Make sure all state is FULL

Page 77: MPLS Deployment Chapter 1 - Basic

The second step is “show ip ospf interface”, to verify interface status towards neighbor, from here we can check the detail status of ospf process, hello timer, dead timer, wait timer, process id, and router id from ospf routing protocol.

Page 78: MPLS Deployment Chapter 1 - Basic

Next type “show ip ospf database”, from here we can see the link id detail, advertised routers, sequence, detail of each area, summary, and so on.

Page 79: MPLS Deployment Chapter 1 - Basic

Last one, command “show ip route” in bogor router (PEJBRBGR01) were used to see path that available from ospf process.

Page 80: MPLS Deployment Chapter 1 - Basic

Next, Chapter 2.

MPLS VPN Services