Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian...

64
Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando (University of Connecticut, Storrs, CT) Jim Davenport (Brookhaven National Laboratories, Upton, NY) Kalum Palandage (University of Connecticut, Storrs, CT)
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    224
  • download

    2

Transcript of Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian...

Page 1: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Mott –Hubbard Transition & Thermodynamic Properties in

Nanoscale Clusters.

Armen Kocharian

(California State University, Northridge, CA)

Gayanath Fernando (University of Connecticut, Storrs, CT)Jim Davenport (Brookhaven National Laboratories, Upton, NY)Kalum Palandage (University of Connecticut, Storrs, CT)

Page 2: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Outline

• Motivation• Small Hubbard clusters (2-site, 4-site)• Ground state properties• Exact Thermodynamics

– Charge dos and Mott-Hubbard crossover – Spin dos and AF Nee l crossover– Phase diagrams

• QMC calculations in small clusters• Conclusions

Page 3: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Quantum Monte Carlo

• Exact analytical results and QMC

h=0

Page 4: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

MotivationElectron Correlations

- Large Thermodynamic System: • Interplay between charge and spin degrees • Mott-Hubbard Transition• AFM-PM (Nee l Transition)• Magnetic and transport properties

-Nanoscale Clusters: • Mott-Hubbard crossover?• Charge and spin degrees?• AFM-PM crossover?

Page 5: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Finite size Hubbard model• Simplest lattice model to include correlations:

Tight binding with one orbital per site Repulsion: on-site only Nearest neighbor hopping onlyMagnetic field

• Bethe ansatz solution [Lieb & Wu. (’67)] Ground state but not correlation functions

Page 6: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Finite size Hubbard cluster

Lieb & Wu. (’67)

Thermodynamics (T≠0)

Ground state (T=0)• Weak correlations in 1d systems:

power law decay (Schulz ’91, Korepin & Frahm ’90)

• Long range order in finite clusters: saturated ferromagnetism (Nagaoka’65)

• Signature of short range correlations: weak magnetization (Aizenman & Lieb’90)correlations decay faster than power law like (Koma & Tasaki ’92)

• No long range correlations:no magnetic order in 1d (Mermin & Wagner. ’66, Ghosh ’71)

Page 7: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Large Clusters: • Bethe-ansatz calculations • Lanczos • Monte Carlo• Numerical diagonalization• DMFT

Small Clusters:

• Exact analytical diagonalization • Charge and spin gaps (T=0)• Pseudogaps (T≠0)

Lieb & Wu. (’67)

Dagotto et al. (’ 84)

Canio et al. (’96)

Jarrell et al. (’70)

Kotliar. et al. (’97)

Page 8: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Mott-Hubbard transition: • Temperature• Magnetic field

AF-PM Transition: • Exchange• Susceptibility

HTSC superconductivity:• Pseudogap formation• Chemical potential (n≠1)

Kotliar (’67)

Schrieffer et al. (’ 90)

Canio et al. (’96)

Page 9: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Neel Magnetic Phase TN

Mott-Hubbard Phase TMH

Two phase transitions in Hubbard Model

From D. Mattis et al. (’69)

M. Cyrot et al. (’70)

J. R. Schrieffer et al. (’70)

Page 10: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Approaching to TMH from metallic state: U↑, T↓

TN consequence of Mott-Hubbard phase

Mott Hubbard and AF transitions

Brinkman et al. (’70)

Anderson (’97)

Slater (’51)TMH consequence of Neel anti-ferromagnetism Approaching to MH phase from insulator: T↑,U↓

Hubbard (’64)

Evolution of dos and pseudogaps, TMH and TN for 2 and 4 site clusters at arbitrary U, T and h

Page 11: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Thermodynamics of small clusters

From Shiba et al., (‘72)

Specific heatof finite chains N=2, 3, 4, 5

Low temperature peak – AFM-PM

High temperature peak – MH transition

Page 12: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Focus on 2 and 4-site clusters

Mott-Hubbard Transition

AFM-PM Transition

Driven by h and T

A single hydrogen molecule acting as a nanowire

Shumann (’02)Shiba et al. (’70)

Harris et al. (’72) Kocharian et al. (’ 96)

Page 13: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Exact ground state properties

Exact mapping of 2-site Hubbard and Heisenberg ground states at half filling (A. Kocharian et al. ’91, 96):

e.g., hC=J(U)

hC - critical field of ferromagnetic saturation

Page 14: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Ground state charge gap (N=2)

e.g., h<hC

e.g., h≥hC

Half filling

• Gap is monotonic versus U and non monotonic versus h

Page 15: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Ground state charge gap (N=1, 3)

Quarter and three quarter fillings

e.g., h<hC

e.g., h≥hC

• Charge gap versus h and Uis monotonic everywhere

Page 16: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Exact thermodynamics (T≠0)

• Number of particles Nat h=0 versus µ and T

• Sharp step like behavior only in the limit T 0

h=0

2 sites: n 24

4 sites: n 44

Page 17: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

h=0

N versus chemical potential (T/t=0.01)

Real plateaus exist only T=0

(not shown)

h=0

Page 18: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Chemical potential in magnetic field

• Number of particles Nat h/t=2 versus µ and T

• Sharp step like behavior only in limit T 0

h/t=2.0, U/t=5.0

• Plateaus at N=1 and N=3 increases with h

• Plateau at N=2 decreases with h

Page 19: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Magnetic susceptibility χ at half filling

• Susceptibility versush at T=.05

• As temperature T 0peaks of χ closely tracks U dependence of hC (U)

hc(U)/t

U/t

4

Page 20: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Number of electrons vs. μ clusters

h=0

• Plateaus at integer N exist only at T=0(not shown in figure)

Page 21: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Charge pseudogap at infinitesimal T≠0

h=0

Page 22: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Charge and spin dos in 2-site cluster

• Charge dos for general N has four peaks

• Spin dos at half fillinghas two peaks

U=6 and h=2

Page 23: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Thermodynamic charge dos and pseudogap

• Charge dos for general U≠0 has four peaks

U=0 and h=0

• Charge pseudogap disappears at TMH

Two peaks merge in one peak saddle point

Saddle point

U=5 and h=0

TMH

Page 24: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Charge dos and pseudogap

• Charge dos for general N has four peaks

Charge dos for general N has four peaks

σ

h=0 h=2t

Page 25: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Spin dos and pseudogap

• Spin dos at half filling has two peaks

U=6

• spin pseudogap at TN disappears (saddle point)

Saddle point

Page 26: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Thermodynamic charge and spin dos

• Charge dos for general N has four peaks

• Spin dos at half fillinghas two peaks

σ

Page 27: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Weak singularity in charge dos

• Infinitesimal temperature smears ρ(μC)≠0 and results in pseudo gap

• At TMH, ρ(μC)≠0 and ρ′(μC)=0 ρ″(μC)>0 . It is a saddle point

MH Transition at half-filling (N=2)

• True gap at μC=U/2 exists only at T=0

n 1• Forth order MH

phase transition

Page 28: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Weak singularity in spin dos

• Infinitesimal temperature smears σ(0)≠0 at h=0 and results in pseudo gap

• At TN, σ(0)≠0 and σ′(0)=0 σ ″(0)>0. . It is a saddle point

Neel Transition at N=2

• True gap exists only at T=0

n 1• Forth order Nee l

phase transition

Page 29: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Weak singularity in charge dos

• Distance between charge peak positions versus temperature

N=2

TMH versus μ MH crossover

Bifurcations atμ=U/2 &μ≠U/2

Page 30: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Weak singularity in spin dos

• Distance between spin peak positions versus temperature

N=2

TN versus h crossover

Page 31: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Spin magnetization

• Magnetization at quarter filling (no spin gap)

• Magnetization at half filling (spin gap)

Page 32: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Magnetization versus h

h=0

• No spin gap at N=1 and 3

Page 33: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Zero field spin susceptibility (N=2)

• TN from maximum susceptibility

• TN from peaks distance

Page 34: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

TN temperature versus U

• TN versus U (AF gap)

• TN from maximumof spin susceptibility

• TN from spin dos peaks

• TF versus U• (Ferro gap)

Page 35: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Zero field magnetic susceptibility χ

h=0

• At large U magnetic susceptibility ~T

At U/t»1 χ increases linearly

N=2

Page 36: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Spin susceptibility

• Susceptibility at quarter filling (no spin gap)

• Susceptibility at half filling (UC/t=6)

h/t=2 N=1N=2

Page 37: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Phase diagram, TMH versus U

• At t=0 TMFMH =U/2

result at t=0. D.Mattis’69• At t=0 TMH = U/2ln2

and ρ(µC )=2ln2/5U

h=0

Page 38: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Phase diagram, TMH versus U

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

TMH

Page 39: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Phase Diagram at half filling

• TMH & TN versus U, at which pseudogap disappears

T/t

U/t

4

MH + AF

MH

N TMH

TN

Page 40: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Mott-Hubbard crossover

• TMH versus h and U

σ

N=2

Page 41: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

4-site clusters

h=0

2 216U t

2 216U t

322

32 2

4 3arccos

16

t U

U t

0zs s

Page 42: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

4-site clusters

2 3

32 2

36arccos

48

t U U

U t

1,0, 1zs 1s

Page 43: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

4-site clusters

h=0

2 216U t

2 216U t1,0, 1zs 1s

Page 44: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

h=0

• Plateaus at integer N exist only at T=0(not shown in figure)

N versus μ in 4 site cluster

No gap atU=0 and N=4

T/t=0.01U/t=4.0

Page 45: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

h=0

Bifurcations at N = 2, 4 and 6

Weak singularity in charge dos

Page 46: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

h=0

Bifurcations at N = 1, 2, 4, 6 and 7

Weak singularity in charge dos

Page 47: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Thermodynamic dos for 4-site cluster

Analytical calculations

h=0

DMFT calculations

Page 48: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Quantum Monte Carlo

• Exact analytical results and QMC

h=0

Page 49: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

• Magnetism and MH crossovers in rings and pyramids

h=0

Quantum Monte Carlo studies

Page 50: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

QMC studies of small clusters

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

Page 51: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

5 sites pyramids

h=0

• Magnetization versus h

Page 52: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

5 sites pyramids

h=0

• Staggered magnetization versus n

Page 53: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

14 sites pyramids

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

Page 54: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

14 sites pyramids

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

Page 55: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Conclusions

• Exact mapping Hex~HU in the ground state• True spin and charge gaps exist only at T=0

ECGap(U)≠ES

Gap(U ) at U≠0

• Pseudogaps appear at infinitesimal T• Charge dos - MH crossover (TMH >TN )• Spin dos - AFM-PM crossover (TN )• Temperature driven bifurcation – generic feature • 1d Hubbard model, UC=0 and true gap in ρ(μC)=0 exists

only at T=0 and n=1• 2 and 4 site Hubbard clusters reproduces main features of

small and large system• Evolution of pseudogap versus μ in HTSC

Page 56: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Rigid spin dynamics

h=0

Page 57: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

QMC studies of small clusters

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

Page 58: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

14 sites pyrmids

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

Page 59: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

QMC studies of small clusters

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

Page 60: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

14 sites pyrmids

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

Page 61: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

14 sites pyrmids

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

• Staggered magnetization (spin at site i)

Page 62: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

14 sites pyrmids

h=0

• Staggered magnetization i (-1)x+y+z (spin at site i)

Page 63: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

4-site clusters

h=0

1,0, 1zs 0zs s

1s 1,0, 1zs

Page 64: Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.

Ground state charge gap

• Gap is monotonic versus U and non monotonic versus h