Motore Stirling

64
1 Team Solaris Final Design (Fall 2003) Group 12 Chris Newton Asegun Henry Hunter Ashmore Dustin Harrelson Sponsor: Dr. A. Krothapalli

Transcript of Motore Stirling

Page 1: Motore Stirling

1

Team Solaris Final Design (Fall 2003)

Group 12

Chris Newton Asegun Henry

Hunter Ashmore Dustin Harrelson

Sponsor: Dr. A. Krothapalli

Page 2: Motore Stirling

2

Abstract_______________________________________________________________ 1 1.0 Introduction ________________________________________________________ 2

1.1 Background_____________________________________________________ 2

2.0 Project Planning ____________________________________________________ 5 2.2 WBS _______________________________________________________ 5 2.1 Schedule ____________________________________________________ 5 2.2 Project Procedures ____________________________________________ 6

3.0 Design Specifications______________________________________________ 7 3.1 Customer Needs and Specifications _______________________________ 7 3.2 Conceptual Designs ___________________________________________ 8

Design Concept 1_____________________________________________________ 8 Design Concept 2_____________________________________________________ 9

Design Concept 3____________________________________________________ 10 4.0 Concept Selection________________________________________________ 12

4.1 Selection Process ____________________________________________ 12

6.0 Solar Concentrator__________________________________________________ 22

7.0 Heat Containment System ____________________________________________ 26 8.0 Stirling Engine_____________________________________________________ 33

Two Basic Engine Designs ___________________________________________ 35 ALPHA Type _____________________________________________________ 39 BETA Type_______________________________________________________ 40 GAMMA Type ____________________________________________________ 41

Stirling Engine Design Selection _________________________________________ 42 Figure 8.9 The alpha type model Stirling engine rated up to 3000rpm. _______ 44

9.0 Tracking Control System _____________________________________________ 49 10.0 Frame ___________________________________________________________ 53

Appendix A ___________________________________________________________ 55

Appendix B ___________________________________________________________ 56

Appendix C ___________________________________________________________ 57 Appendix D___________________________________________________________ 58

Appendix D cont’d _____________________________________________________ 59 Appendix E ___________________________________________________________ 60

Appendix E cont’d _____________________________________________________ 61 Appendix F ___________________________________________________________ 62

Stirling Engine References ___________________________________________ 62

Page 3: Motore Stirling

1

Abstract As fossil fuel technologies become obsolete, mostly due to the depletion of fuel sources,

the demand for alternative energy technologies, such as solar power, fuel cells, and wind

power, grows. The reason as to why these alternative energy sources have not been more

widely utilized is that fossil fuels are relatively low cost compared to the initial setup

price for these alternative sources, and the lack of efficient devices that are readily

available for obtaining alternative energy.

Of the available alternative energy sources, the sun is quite possibly the easiest to

obtain, and is a great source of pollution free energy. The goal of our project, Solaris, is

to harness the suns energy and in turn, generate electricity. This is to be done by use of a

stirling engine/generator system which will be placed at the focal point of the parabolic

reflector.

Page 4: Motore Stirling

2

1.0 Introduction 1.1 Background

A potentially great source of radiant energy is the sun. The sun emits

electromagnetic radiation with a solar irradiance of 1367 W/m2 on the earth’s surface. Of

this solar radiation reaching the earth, it is comprised mostly of radiant energy ranging in

wavelengths between 0.3 and 2 µm. This radiant energy is then comprised of two types

of radiation, beam and diffuse radiation. If a flat surface collector is utilized, both beam

and diffuse radiation is collected, but if an optical (i.e. parabolic/focusing) collector is

used, then only beam radiation is collected.

The purpose of a focusing solar collector is to increase the intensity of the solar

radiation falling on the collector. The factor by which the solar irradiance is increased is

known as the concentration ratio, CR, which is defined in Equation 1.1,

2))(4(156.1F

DECR m= (1.1)

where Dm is the dimension of the collector and F is the focal length. Figure 1.1 shows

the principle of light concentration for a parabolic reflector.

Page 5: Motore Stirling

3

Figure 1.1 A parabolic reflector (Dm) concentrates the solar irradiance on the smaller collector (Di) at the focal point.

By focusing the solar irradiance to a particular point, the system is capable of producing

sufficiently high temperatures to use in a heat engine cycle to generate electrical power

efficiently.

This idea of using the suns heat as a source of power is not a new one. This

concept is dated as far back as 1000AD with the development of focusing mirrors by Abu

Ali al-Hasan al-Haitham. It is also noted that during the 1640s, in Rome, Father

Athanasius Kircher had shown that sunlight could be concentrated to a point to ignite

fires. Figure 1.2 shows an image of a German burning mirror of the 1700s. As shown in

the picture, the mirror is being used to set fire to a pile of wood from a distance.

Figure 1.2 Picture of ‘German burning mirror’ (Parabolic Reflector) of the 1700s.

Page 6: Motore Stirling

4

By utilizing the high temperatures created at the focal point of parabolic reflectors,

along with a heat engine, such as a stirling engine, it is possible to efficiently generate

electrical power. A stirling engine is a closed-cycle, regenerative heat engine which uses

and ‘external combustion’ process, which in this case is solar heat. The stirling engine

works by converting heat energy to mechanical work, such as spinning a flywheel. This

mechanical work can then be converted to electrical energy by use of a generator attached

to the flywheel of the stirling engine.

Page 7: Motore Stirling

5

2.0 Project Planning 2.2 WBS

The Work Breakdown Structure (WBS) Chart displays the structure of a project

showing how a project is organized into a summary (phase) and detail levels. The WBS

is a great way to organize a project into a schedule of duties and events that must take

place throughout the project scope. Using a WBS chart is an intuitive approach to

planning and displaying a project. As a planning tool, the WBS Chart can be used to

quickly create a project by ‘drawing a picture’.

Team Solaris’ WBS can be found in Appendix A. Our WBS shows the

relationship between each of the activities the team is undertaking, and helps to give a

clear view of the task that will be performed in this project.

2.1 Schedule

The schedule for Team Solaris can be found in Appendix B. The schedule shows

the breakdown of all the project activities. The chart shows all the dates by which

activities will be started and/or completed by. All deliverables have been included in the

schedule, allowing for preparation time before they are due. The dates on the schedule

are tentative, and may be changed in order to complete the project in a timely fashion or

to account for any unforeseen problems that may arise.

Page 8: Motore Stirling

6

2.2 Project Procedures

Documentation and e-mails:

1. All Documents will be dated as received; a copy of all documents will be

available to every team member as a hard copy, e-mail, or team folder on

blackboard.

2. All e-mails concerning the project will be sent to every team member regardless

of relevance to individual tasks.

3. The official copy of all documents will be held by Chris Newton, and will be

brought to every group meeting.

Meetings:

1. Regular meetings with the customer will be held no less then every other week to

update him on the progress of the project.

2. Regular team meetings will be held no less then once every week to update group

members on project progress.

3. All team members required to attend meetings unless notification of absence is

given 24 hours before time of meeting.

Reports and deliverables:

1. All group members will approve all reports.

2. Deliverables will be started no less then four days before they are due.

3. All team members must be present to prepare deliverables.

4. If a team member cannot be present to help in the preparation of the deliverables,

he must give notice to rest of team.

Page 9: Motore Stirling

7

3.0 Design Specifications 3.1 Customer Needs and Specifications

According to Dr. A. Krothapalli, Team Solaris’ final design needs to be capable of

producing an optimum amount of electricity. Dr. A. Krothapalli wishes for Team Solaris

to generate 1 kW or electricity, but due to the budget, the final output is negotiable. The

electricity is to be generated from a stirling engine which obtains its heat from a solar

collector. The solar collector, as instructed by our sponsor, is to be made from a surplus

satellite dish. Another constraint, which was also place on the project, is that the dish

must track the sun throughout the course of the day. This whole design and construction

of the project is to be done for less than $5000.

Table 3.1 Wish/Demand List of Sponsor and Importance Wish/Demand Requirement Importance

Demand Solar Collector made from large parabolic dish 10 Demand Device to be self sufficient 10

Demand Device to have a minimum output of 1kW of

electricity after sustaining itself (batteries, servos, computer)

10

Demand Dish must track the sun 10 Demand Dish must reset itself in the evening 10 Demand Type of engine to be used: Stirling Engine 10

Wish AC generator 8

The generation of electricity for this project is to be done by harnessing the suns

energy with the use of a large parabolic dish, which must track the position of the sun

throughout the day. The dish will be coated in aluminized Mylar because of its

reflectivity, workability, and relatively low cost. The dish must then reset itself at night

under its own power and be ready to operate the following day. The Stirling engine will

Page 10: Motore Stirling

8

use the heat at the focal point of the dish to change heat energy to mechanical energy. A

DC motor/generator will be attached to the Stirling engine, either by belt, or directly on

the shaft. The generator needs to produce enough electricity to supply enough power to

sustain the system, plus generate an optimum useable amount of electricity.

3.2 Conceptual Designs

Once the needs of the customers’ ‘problem’ were understood, Team Solaris was able to

come up with several basic conceptual ideas.

Design Concept 1

This particular design consists of a parabolic dish with a stirling engine and generator

located at the focal point of the dish. Solar radiation is reflected to the focal point, onto

the expansion (heat) cylinder of the stirling engine. The one downside to this design

concept is that there is a large amount of weight that needs to be supported at the focal

point. Figure 3.1 shows a drawing of Design Concept 1.

Page 11: Motore Stirling

9

Figure 3.1 Design Concept 1 – Components of system located at focal point

Design Concept 2

This design concept, as shown in Figure 3.2, utilizes a heat containment unit, filled with a

working fluid such as molten salt, which will transfer the heat from the focal point of the

dish to the expansion (heat) piston of the stirling engine. The stirling engine will be

located on the ground/platform beneath the parabolic dish. This design simplifies the

design of the dish from the first concept, in that the supports at the focal point do not

have to undergo as much stress.

Page 12: Motore Stirling

10

Figure 3.2 Design Concept 2 – Heat containment at focal point. Use of working fluid to transfer heat to stirling engine.

Design Concept 3

In this design concept, the solar radiation is focused onto a concave mirror, which is then

reflected and focused downward through the center of the parabolic dish. Directly below

the dish is where the stirling engine will be located, along with a heat reservoir, if needed.

This concept is the most feasible, in that weight will not be a factor at the focal point,

which simplifies the design, as shown in Figure 3.3.

Page 13: Motore Stirling

11

Figure 3.3 Design Concept 3 – All components of system are placed below the center of the dish, and the solar energy is redirected from the focal point.

Page 14: Motore Stirling

12

4.0 Concept Selection

4.1 Selection Process

In order to choose the best concept for the design, the team looked at each option,

taking into consideration which design would be the most feasible and the simplest to

construct. With this in mind, the team chose

Concept Design 3 as its preliminary design.

Before Team Solaris would permanently

choose this design, it needed to be tested to

make sure the optics ideology behind it

would work. The testing was performed

with a 24-inch parabolic reflector and a 35-mm gold plated concave spherical mirror. An

apparatus was constructed to allow for adjustments of the mirror at the focal point. It

was found that the idea behind the optics idea

for transferring the suns energy did work, in that

it transferred the light, but failed in that it did

not transfer enough heat. Thus the simplest, and

most favored design idea failed. Not wanting to

deal with a working fluid, and a means of a pump system that could withstand high

temperatures, Team Solaris decided that Design Concept 1 was the design to go with.

Since Design Concept 2 failed, and the team chose to go with Design Concept 1, the

temperature at the focal point needed to be determined. This was done with an Omega k-

type thermocouple, and an Omega DPi8A digital display. It was found that the

Page 15: Motore Stirling

13

temperature at the focal point would reach

700°F with out any problem. This proved to

be an adequate amount of heat for the

stirling engines which had been located for

use on the project; with the operating

temperatures of the stirling engines ranging from 300 to 1200°F.

5.0 Solar Collector

The purpose of the solar collector is to collect the radiation incident from the sun.

The parabolic shape is used to collect light from a larger area and condense it down to a

much smaller area. The reduction in area increases the radiation power density, as the

same radiation that would have been spread over a few square meters, can be collected

and spread over an area less than a square meter. This concentration of radiation is used

as a form of heating for the Stirling engine. The goal of the collector design is to

maximize its efficiency within the project budget of $5000. Using some initial guess

efficiencies for each energy conversion process, it was estimated that to produce a

kilowatt of power output from the generator, that a twenty-foot diameter dish was

needed. This option was not feasible because of cost, thus a ten-foot diameter dish was

used. The ten-foot diameter dish was obtained and required assembly. The circular

collector mesh was separated into four partitions. Each partition was supported by curved

metal supports and could be subdivided into four sub-partitions as in the following figure.

Page 16: Motore Stirling

14

Figure 5.1 Satellite Dish Partition

The used ten-foot dish was donated to the team and therefore did not hinder the

budget, however, being undersized for the initial power requirements made many design

modifications become necessary. In order to optimize the design of the collector a

material was needed to coat the shape and serve as a light reflector. The goal was to

choose a material that could adhere to the satellite dish surface. The surface of the dish,

shown below was made of a conformable metal meshing.

Page 17: Motore Stirling

15

Figure 5.2 Satellite Dish Metal Mesh

This mesh was the surface in which the reflective material would have to adhere

to and therefore its composition had to be factored into the material selection. To get the

maximum radiation reflected off the dish surface up to the focal point, a material with a

high reflectivity had to be chosen. The radiation incident to an object must be absorbed,

reflected or transmitted. Different amounts of radiation are transmitted and reflected for

different types of surfaces, however, the following energy conservation equation shows

how the total amount of radiation energy must be accounted for through each of the

modes.

α⋅= GGabs , τ⋅= GGtr , ρ⋅= GGref (5.1)

GGGG reftrabs =++ , 1=++ ρτα (5.2)

Page 18: Motore Stirling

16

G is the incident radiation,α is the absorptivity, τ is the transmissivity, and ρ is the

reflectivity. Each mode of radiation takes a fraction of the incident energy such that the

sum of the coefficients is one. These three dimensionless constants are properties of any

material and for an opaque surface τ is zero and the remaining coefficients transfer all

the energy. For this application the goal is to find a material that could adhere to the

parabolic shape of the collector while also having a high reflectivity. In the search for this

material, aluminized mylar was chosen because it has the texture of wall paper and has a

reflectivity of 0.83.

Figure 5.3 Aluminized Mylar Film

This particular material was also readily available and cheap, which made it an

easy choice for the design. In addition to having a high reflectivity, the mylar also has an

emissivity of .76, which is good because a high emissivity denotes that it emits a large

portion of the radiation it absorbs. This would add back into the energy that is lost due to

absorption.

Page 19: Motore Stirling

17

Measurements of the dish dimensions were taken to calculate the equation to

describe its shape. This was needed to accurately calculate the shape and focal point of

the dish.

Figure 5.4 Dish Parabola Equation and Focal Length

By measuring the labeled radius and hypotenuse of the dish the depth could be back

calculated using Pythagorean theorem.

22 RadiusHypotenuseDepth −= (5.3)

From this calculation the constant needed to calculate the equation of the parabola could

be determined, where the shape of a symmetric parabola is given by,

bxaxf +⋅= 2)( (5.4)

where f(x) is the function describing the shape of the parabola, and x is the horizontal

distance from the center. The constants a and b describe the shape, where b can be made

zero by placing the bottom center of the dish at the origin. From this constraint, the value

of f(x) is equal to the depth when x is equal to the dish radius. Therefore the constant a

can be calculated using the following equation.

2RadiusDeptha = (5.5)

Radius

HypotenuseDepth

Focal Point

Page 20: Motore Stirling

18

Once the constant is solved for, the focal point can be found. The focal length of a

parabola is the distance from the bottom to the focal point. The focal point for a

symmetric parabola lies along the axis of symmetry, and the distance above the

intersection of the axis and curve is given by.

afl

⋅=

41 (5.6)

Where fl is the focal length, which establishes the position of the focal point. The

measurements for the ten-foot dish can be applied to equations (5.3) through (5.6) and the

actual focal length can be determined. The following table indicates the measurements

for the ten-foot dish and shows the corresponding calculated values.

Table 5.5 Dish Measurements and Calculations

The calculation of the focal length is useful, however due to the dynamics

involving the sun and earth the focal point will not be an exact point as it will actually be

a focal area. The area in which the radiation is condensed is what will determine the

radiation intensity. The higher the radiation intensity is the higher the temperature of heat

reservoir will be, which supplies heat to the Stirling engine. There is a limit on the size of

the focal area as the ratio of the collector area to the focal area can be calculated as the

concentration ratio. The limit to the concentration ratio arises from the combination of the

size of the sun with its distance from the earth. There is a small variation in angle of the

incident radiation from the sun when its center is aligned with that of the dish.

Value (SI) Value (Eng)Radius 1.524 m 5 ft

Hypotenuse 1.613 m 5.292 ftDepth .528 m 1.732 ft

a 0.227 (1/m) 0.745 (1/ft)fl 1.1 m 3.609 ft

Page 21: Motore Stirling

19

Figure 5.6 Sun Diameter and Distance Affect on Concentration Ratio

Figure 5.6 shows that the angle sθ , causes a small variation in the angle at which incident

radiation impinges the collector surface. This variation causes the focal point to spread

over the area created by the rays that are not aligned perpendicular with the collector

surface. This small area creates a limit for how small the focal area can be and can be

calculated by knowing the angle sθ and the area of dish. The angle sθ is determined

from the diameter of the sun and distance to the earth given by the following equation.

Rrs =)sin(θ (5.7)

Where r is the sun radius and R is the distance from the sun using this equation the angle

sθ can be calculated as 0.27 degrees. The maximum concentration ratio for a circular

collector is given by the following equation.

)(sin1max 22

2

srR

AfpAcC

θ=== (5.8)

Where C is the concentration ratio, Ac is the collector area, and Afp is the area of the

focal point. The maximum concentration ratio for a circular parabolic collector is 45,000.

The purpose in calculating the actual concentration ratio is to relate it to the maximum

obtainable temperature of the receiver placed at the focal region where the relationship is

given the following figure.

Page 22: Motore Stirling

20

Figure 5.7 Concentration Ratio vs. Temperature

It is clear from this figure that in order for the receiver temperature to be maintained in

the regime over 1,000 degrees C the concentration ratio must approach 1,000. This is a

useful calculation as will be demonstrated in the following section. Using the area of the

ten-foot dish, the necessary focal area can be determined to bring the receiver into the

1,000 degree C temperature range. The following graph shows how the concentration

ratio varies, where the focal area is described by a circle of diameter dfp. The diameter is

shown in meters and the corresponding concentration ratio is calculated.

Page 23: Motore Stirling

21

0.04 0.06 0.08 0.1 0.12 0.14

2000

4000

6000

8000

Focal Area Diameter (m)

Con

cent

ratio

n R

atio

8000

400

C dish d fp( )

6in1.5in d fp

Figure 5.8 Concentration Ratio vs. Diameter of Focal Area

From this plot it is evident that in order to get the receiver temperature in the

1,000 degree range the focal area would need to be reduced to a small circle less than

four inches in diameter (0.1m). With this in mind, the necessity of coating the dish with

the mylar effectively increased. A few different methods were explored involving

attempts to put screws through the mylar and bolt it to the metal mesh of the dish. These

methods were unsuccessful as they stressed the mylar and caused large wrinkle

deformations in the shape. These deformations would cause the radiation to deviate from

the prescribed path and would serve to increase the focal area. Different types of

adhesives were researched and a spray adhesive that was weather resistant was found.

This adhesive was then used to coat the dish with the mylar, over the screws.

Page 24: Motore Stirling

22

Figure 5.9 Mylar Cut Around Screws

The mylar was cut into strips the size of the sub-partitions and then cut into smaller sizes.

Each piece was glued to the mesh and small slits were cut where the screws were

attached to allow the mylar to lie more flat against the mesh. After the mylar was laid the

focal area was measured, and was found to be about two feet in diameter. This large focal

area is largely due to wrinkles and imperfections in the dish’s shape. To further condense

the light a magnifying glass, or solar concentrator, were used to decrease the focal area

and increase the temperature.

6.0 Solar Concentrator

The purpose of the concentrator is to condense the light reflected off the satellite

dish. The dish is moderately effective at collecting the light, however imperfections in the

surface compounded with its loss of reflectivity from handling prevent it from creating

the necessary heating to run the engine. The goal is to design a magnifier that can focus

Page 25: Motore Stirling

23

the light into a smaller region to increase the power density. By decreasing the focal area

the concentration ratio can be increased, and subsequently, the operating temperature of

the heat reservoir can be increased. By increasing the temperature of the reservoir the

heat to the engine can be amplified to result in an increase in efficiency. This is best

understood in relation to the idealized carnot efficiency given by,

THTCTH −

=η (6.1)

where η in the ideal heat engine efficiency, TH is the hot temperature and TC is the cold

temperature. This relationship is useful because it gives an upper limit to the feasible

efficiency and also shows how the efficiency is increased, by increasing the difference

between TH and TC. The Stirling engine portion of the energy conversion process is

expected to be the least efficient, therefore persistent efforts must be made to boost the

engines efficiency. Subsequently the goal of optimizing this component of the design is

to capture most of the reflected radiation and significantly reduce the focal area. To do

this an optical magnifier must be used to further condense the sun’s light into a small

region of intense heating. To focus the radiation, a Fresnel lens will be used, which is a

prism ridge approximation to a magnifying glass. A Fresnel lens uses a series of ridges as

circular rings to bend light rays toward its focal point. Each ridge is an approximate prism

with the corresponding shape to focus light towards the focal point. The lens will be used

instead of a glass magnifying glass to save cost, as a magnifying glass of the size required

for this application could easily exceed the budget. The Fresnel lens, as an approximate

magnifying lens, can be made from a plastic sheet, which dramatically reduces its cost.

The following figures illustrate the manner in which it manages incoming light rays and

directs them to its focal point.

Page 26: Motore Stirling

24

Figure 6.1 Fresnel Lens Ray Ddiagram

Figure 6.2 Fresnel Lens Characteristics

The Fresnel lens uses concentric ridges to focus the light and the density of the ridges

determines the image quality. For this application image quality is not the objective, and

therefore a low ridge density can be used for the purpose of light collection. The Fresnel

lens will be mounted below the focal point of the dish, so that the focal points for the dish

and lens coincide. For this design a Fresnel lens from Edmund Optics will be used, which

Page 27: Motore Stirling

25

has a diameter of 18.25 inches and a focal length of two feet. The following figure

illustrates the positioning of the solar concentrating lens with respect to the dish.

Figure 6.3 Positioning of Solar Concentrator

The solar concentrator increases the operating temperature of the heat reservoir by

directly increasing the concentration ratio. The factor of concentration ratio increase is

denoted by the reduction in area given by the following equation.

ArKAi ⋅= (6.2)

Where, Ai is the initial concentrated area, Ar is the reduced area and K is the

concentration increase factor. With the initial radius approximately two feet in diameter

and reduced area approximately four inches in diameter the concentration factor is

approximately 36. This is well over ten, which would boost the temperature from the low

temperature (approximately 400 degrees C) regime to the high temperature regime

(approximately 1000 degrees C). Thus this component serves as the solar concentrator,

which intensifies the solar radiation into a small focal region. With the heat collected the

need for its containment arises. With such a high power density the energy could easily

exceed that of which a Stirling engine is designed for. Therefore the need for a thermal

buffer arises. The thermal buffer should store the intense heat and supply it to the Stirling

engine component at a rate that is acceptable.

Focal Point 2 feet

Lens

Page 28: Motore Stirling

26

7.0 Heat Containment System

The heat containment system is needed to buffer between the solar radiation and

the Stirling engine. The need for the buffer arises from the need to supply the engine with

a consistent heat input. By building a thermal buffer that can absorb radiation, store

thermal energy and deliver it to the engine, a thermal reservoir can be achieved. A few

benefits arise from this component including absorption maximization, time constant

extension and heat loss minimization. These three characteristics are the advantages of

implementing such a system and they are the target factors in the system optimization.

To accomplish the three target goals the heat containment system will include

different materials, which are best suited for each factor in the design. These different

materials will each serve an individual purpose and will be optimally designed to

interface with each other. To maximize absorption the containment system will need to

be made of a material with a high absorptivity. This material may not have all the

characteristics that will be best for the design however a material with a high absorption

and low emissivity and high thermal conductivity will be the best to interface with the

incident radiation. To design a material for this application, a cheaper material such as

aluminum, which will make up the bulk of the system, can simply be coated or plated

with another material with the high absorption and low emissive properties needed. The

two most likely coatings are black nickel oxide and black chrome. It is known that black

surfaces approach the characteristics of the idealized black body, and therefore a black

coating is necessary. The black nickel oxide would be the most effective candidate when

comparing the ratio of its absorptivity and emissivity, however this plating can be

Page 29: Motore Stirling

27

expensive and may prove to hinder the budget. The black nickel oxide absorptivity is

0.92, while its emissivity is 0.08. As with these characteristics, it will effectively capture

the reflected radiation and will have minimal surface radiation. The ratio of these

properties is 11.5, however for the black chrome, the absorptivity is 0.87 and its

emissivity is 0.09, yielding a ratio of 9.7. Although this ratio is smaller this coating will

be more cost effective and easily obtained, therefore it will be used as the coating in this

design.

The heat containment system will be used as a thermal buffer and in essence it

will serve as a large thermal capacitor, because it will store the sun’s energy and provide

it at a desirable rate. The thermal reservoir will need a material with a large specific heat.

The systems time constant must be determined, so that the correct amount of mass can be

used to store enough energy in the thermal capacitor so that the system does not fluctuate

throughout the day’s operation. To determine the systems time constant, the following

energy balance must be evaluated to determine the transient temperature profile of the

reservoir.

dtdTCpmQoutQin ⋅⋅=− (7.1)

Where Qin is the heat supplied by the collector and concentrator, Qout represents the

convective and linear approximated radiation losses, m is the mass of the reservoir, Cp is

the specific heat of aluminum and dtdT is the time rate of change of the temperature. The

convective losses will be for all exposed surfaces. The radiation losses will be treated as

the linearized approximation 3TA ⋅⋅⋅σε to reduce model complexity, where T is an

overestimated 1200 degrees C for the purpose of worst-case analysis. The emissivity ε

Page 30: Motore Stirling

28

will be that of the chrome plating and the heat input will be calculated based on the

reflectivity of the mylar and absorptivity of the chrome plating. For this analysis the heat

supplied to the engine will be estimated at three kilowatts. The lost heat will be calculated

using one inch thick ceramic tile insulation with a thermal conductivity of 0.09 W/mK at

1000 degrees C. Using these assumptions and reductions this differential equation can be

solved, where the result has the following form.

−⋅⋅+= ⋅⋅

∞RthCpm

t

eRthQinTtT 1)( (7.2)

T(t) is the transient temperature function and Rth is the thermal resistance given by the

following equation which takes into account the natural convection from all surfaces, the

radiation from all surfaces, and the conduction through the insulation.

1

3

11

+⋅∆

+⋅⋅⋅+⋅=

hAAkx

TAAhRth σε (7.3)

h is the natural convective heat transfer coefficient, A is the surface area, ε is the

emissivity of the chrome plating, σ is Boltzman’s constant, T is the overestimated

temperature, x∆ is the insulation thickness, and k is the insulation thermal conductivity.

The thermal resistance was derived by relating the resistances from the following thermal

loss modeling circuit, which models all separate heat transfer modes in parallel.

Page 31: Motore Stirling

29

Convection

Radiation

Conduction/Insulation Convection

Reservoir Temp Ambient Temp

Figure 7.1 Thermal Reservoir Heat Loss Resistance Circuit

To further optimize the heat reservoir, the thermal losses to the surroundings must

be minimized so that it can remain at the highest possible temperature. To do this only,

one face of the reservoir must absorb the radiation as the other surfaces can be insulated

from the outside air. Solarguard insulation will be used to reflect the radiation emitted by

the reservoir back onto itself. Solarguard insulation is a foil-like wrapping that can be

included in the design in between the reservoir and insulating ceramic tiles. By insulating

the reservoir the Qout term in Equation (7.1) can be minimized, which can result in a

higher operating temperature. Considering these components, optimization will lead to

greater and more efficient performance.

The geometry of the reservoir should be one that minimizes the surface area and

maximizes the mass. To do this the triangular shaped interface was selected because it

has the smallest amount of faces, and minimizes surface area. Therefore all other shapes

with the same cross sectional area will have greater surface area. In addition to optimal

geometry highly conductive thermal grease will be interfaced between the engine and

Page 32: Motore Stirling

30

reservoir to minimize contact resistance. Subsequently the triangular shape was used as

the basis for the design and is shown in three dimensions in the following figures.

Figure 7.2 Heat Containment System

Page 33: Motore Stirling

31

Figure 7.3 Heat Containment Front View

Using the thermal model, a transient simulation of the thermal reservoir

performance was run as it displays the time response of the system using the above

design, in which the dimensions are shown in inches.

Page 34: Motore Stirling

32

0 5000 1 .104 1.5 .104 2 .104200

400

600

800

1000974.214

298

Temp t( )

2 104×0 t

Figure 7.4 Heat Capacitor Transient Temperature Profile

The solution to Equation (7.2) yields Figure 7.4, which is the transient response of the

temperature reservoir. The denominator in the exponential of equation (7.2) gives the

system time constant which is 1.4 hours such that the time to steady state is

approximately 7.1 hours. Assuming the sun rises around seven o’clock, the reservoir

should reach steady state as the sun reaches its maximum flux around two o’clock in the

afternoon. This large time constant will serve to minimize fluctuations in the heat input to

the Stirling engine as it should also run for 7 hours after the heat input is diminished at

sunset. According to the simulation the reservoir should supply the heat to the engine

above 980K (700 degrees C), as this is useful information to selecting the proper Stirling

engine.

Page 35: Motore Stirling

33

8.0 Stirling Engine

A Stirling engine is a closed-cycle, regenerative heat engine which uses an

external combustion process, heat exchangers, pistons, a 'regenerator' and a gaseous

working fluid contained within the engine to convert heat to mechanical work (motion).

The regenerator is an important feature of the Stirling engine because is used to

store energy from the gas as it passes through on the way to the cooler (low temperature

heat exchanger) and gives energy to the gas as the gas flows back through the regenerator

going to the heater (high temperature heat exchanger). It is the regenerator that makes

the Stirling Engine.

The operation of the Stirling engine is not complicated. There are no carburetors,

ignition systems, valves, or other complicated mechanisms. Stirling engines run off of the

expansion of air as it is heated, and the contraction of the same air as it is cooled. The

source of heat can be wood, fuel oil, sunlight, or geothermal sources.

Because the Stirling engine uses external combustion, it is extremely

environmentally friendly. The actual combustion process can be controlled to deliver

maximum heat with extremely low emissions. The engine’s suitability for renewable

energy sources such as geothermal, biomass and solar energy make it a true "green"

machine. It is a quiet engine, addressing noise pollution concerns.

Page 36: Motore Stirling

34

The Stirling Cycle

The cycle consists of four internally reversible processes; isothermal compression

at the cold temperature source (Fig 8.1, curve 1), constant volume heating (curve 2),

isothermal expansion at the hot temperature source (curve 3), and constant volume

cooling (curve 4). These processes are performed on a sealed volume of working gas

which is most often air.

Figure 8.1 P-V Diagram of the Stirling cycle.

Page 37: Motore Stirling

35

Two Basic Engine Designs

Displacement Type

There are two basic categories of Stirling engines. The first is the simpler of the

two and is a basic displacement engine (Fig 8.2).

In the displacement engine there are two pistons. The smaller piston shown in

Figure 1 is the power piston. All of the power for this model is provided by the power

piston. The second larger piston is the displacer piston. Its function is to move the air

between the hot and the cold sides of the air compartment. It provides no power at all.

Figure 8.2 Displacement type Stirling engine cycles.

Page 38: Motore Stirling

36

The power piston for this model should be 90 degrees out of phase from the displacer

piston. This model has four simple steps. Beginning at the top of the Figure 1, the first

step is heating. The heating is caused by the movement of the displacer piston so that

most of the gas is on the hot side. The temperature of the gas subsequently increases,

causing an increase in pressure. Because of this increase in pressure there is an

expansion of the gas causing the power piston to rise. Then, due to the 90 degree phase

shift between the two pistons, the displacer piston is moved, resulting in the cooling of

the gas. But when the gas is cooled, the pressure decreases, causing a contraction in the

gas, thereby pulling the power piston back down. Then once again, due to the 90 degree

phase shift, the displacer piston follows causing the gas to shift to the hot side of the

chamber. The temperature of the gas then increases, which completes the cycle. This is

the most basic model of the Stirling engine.

The second model works on the same principles as the displacement type but it is

a little more intricate and is known as a two-cylinder engine (Fig 8.3).

Page 39: Motore Stirling

37

Figure 8.3 Two-cylinder Stirling engine cycle.

Page 40: Motore Stirling

38

The two piston model is slightly more complex than the displacement model.

There are still two pistons, and they are still 90 degrees out of phase from one another.

However, in this model power is supplied by both pistons, and the displacement of the

gas is caused by both as well. Yet same basic process occurs as with the displacement

model. Once again, starting from the top of the illustration, the first step is the heating of

the gas in the chamber. The flywheel is turning, and thus the cold piston moves up, and

the hot piston moves down causing the gas to flow to the hot side. This then causes an

increase in the temperature of the gas. The gas therefore expands, pushing both pistons

downward. At this point the inertia of the flywheel causes it to continue rotating which

in turn raises the hot piston and pulls the cold piston downward. The gas is then pulled to

the cold side of the chamber, and the temperature of the gas is decreased. This decrease

in temperature causes the gas to contract, and therefore pulls both pistons upwards.

Then, once again, the inertia of the flywheel pulls the hot piston down and pushes the

cold piston up. Thus the gas flows to the hot side of the chamber and is heated, ending

the cycle where it began.

There are hundreds of variations of types of these two designs. They are divided

into Alpha (two-cylinder type), Beta (displacement type) and Gamma (displacement

type). Then there are the double acting engines which are alpha engines in series. These

can drive either a crankshaft drive, a swashplate drive or a cousin, the wobble drive.

Page 41: Motore Stirling

39

ALPHA Type The Alpha engine (Fig 8.4) is a two-cylinder type having two pistons in separate

cylinders which are connected in series by a heater, regenerator and cooler. The Alpha

engine is conceptually the simplest Stirling engine configuration, however, it suffers from

the disadvantage of both pistons requiring seals in order to contain the working gas.

The Alpha engine can also be compounded into a compact multiple cylinder

configuration (Fig 8.5), enabling an extremely high specific power output. The four

cylinders are interconnected, so that the expansion space of one cylinder is connected to

the compression space of the adjacent cylinder via a series connected heater, regenerator

and cooler. The pistons are typically driven by a swashplate, resulting in a pure sinusoidal

reciprocating motion having a 90 degree phase difference between the adjacent pistons.

Figure 8.4 Alpha type Stirling engine.

Page 42: Motore Stirling

40

BETA Type

The Beta engine (Fig 8.6) has a single power piston and a displacer, whose

purpose is to "displace" the working gas at constant volume, and shuttle it between the

expansion and the compression spaces through the series arrangement cooler,

regenerator, and heater. The Beta configuration is the classic Stirling engine

configuration and has enjoyed popularity from its inception until today.

Figure 8.5 Compounded Alpha type Stirling engine.

Figure 8.6 Beta type Stirling engine.

Page 43: Motore Stirling

41

GAMMA Type

Gamma type engines (Fig 8.7), like Beta, are also displacement type have a

displacer and power piston, similar to Beta engines, but in different cylinders. This allows

a convenient complete separation between the heat exchangers associated with the

displacer cylinder and the compression and expansion work space associated with the

piston. Thus they tend to have somewhat larger dead (or unswept) volumes than either

the Alpha or Beta engines.

Figure 8.7 Gamma type Stirling engine.

In the gamma-type engine cycle, the isothermal compression occurs as the power

piston reduces the volume of the working gas and the displacer chamber is in the cold

source state. The displacer then insulates the cold source, moving the gas in the chamber

to the hot source, resulting in constant volume heating. Isothermal expansion occurs as

the power piston moves, allowing the working gas to expand. Finally, the displacer

insulates the hot source, moving the working gas to the cold source, cooling the constant

volume of gas.

Note: During the expansion process some of the expansion must take place in the

Page 44: Motore Stirling

42

compression space leading to a reduction of specific power. Gamma engines are therefore

used when the advantages of having separate cylinders outweigh the specific power

disadvantage. This is the type of engine that will be used for our design.

Stirling Engine Design Selection

In selecting a Stirling engine to generate our 1kW goal we quickly ran into a

problem. There are tons of available plans for model Stirling engines, but very few are

even rated over 100 W mechanical work output. It turns out that an affordable 1kW

generating system is the goal of quite a few companies right now. Affordable is the key

word here. The first problem is, almost all of them are in the prototype stage. The few

that aren’t in prototype stage are designed for use with a fuel burner and would be near

impossible to modify to mount at the focal point of a concentrating dish. Even if we

could talk them into reprogramming the control computers and succeed in mounting it in

the correct orientation at the focal point, we still have the problem of cost. The lowest

priced complete 1kW unit that is for sale is somewhere around 3 times the budget of our

entire project.

There are several companies working on units in the 1kW range, but they do not

like revealing too much about them. These people base their entire livelihood on these

engines, so of course they are not going to let their plans out to anyone. Stirling

Technology Company (STC) is one company with a commercially available 1kW system.

Page 45: Motore Stirling

43

Figure 8.8 Stirling Technology Company’s RG-1000 1kW generator

When first searching for the designs for a Stirling engine, we quickly found plans

everywhere for working models. We found a few very good designs for model Stirling

engines that had been built and tested. We thought of maybe scaling up one of these

designs. A Japanese inventor by the name of Koichi Hirata developed the design we

were thinking of scaling up. The plans for the model are all online and it is said to run at

up to 3,000 rpm. Scaling this design up to our needs sounded like a good idea. The

completed model can be seen in Figure 8.9.

Page 46: Motore Stirling

44

Figure 8.9 The alpha type model Stirling engine rated up to 3000rpm. Another design by the same inventor is a rotary displacer prototype. We decided against

this one since this is a very new prototype. There is no data available about it and there is

not anything that even says it will work.

Figure 8.10 The prototype rotary engine

Page 47: Motore Stirling

45

It turns out the Stirling engine process is fairly simple in principle; however

getting one to work properly is almost an art. There are so many factors that make a

different in the performance of the engine. Even something as seemingly miniscule as a

small temperature gradient in the piston wall is enough to throw the efficiency of the

entire engine out of whack.

After talking to numerous people that center their lives on Stirling engine design,

it became clear that relying on a design that had never been tested before was out of the

question. The only logical choice was to settle for a lower power output from an engine

that is a proven working design.

After countless hours of searching, a man by the name of Mr. Dieter Viebach in

Germany was located that produces plans for a gamma type Stirling engine with a

mechanical work output of 500 W an electrical output of 450 W. These plans are sold at

the moderate cost of 65 euros, or about $79 USD. The castings are apparently available

for about $905 USD. This is of course without shipping.

Page 48: Motore Stirling

46

Figure 8.11 Viebach Synchrongenerator ST 05 G-G 450 Watt

This engine stands a height of 600 mm, or about 23.6 inches. The surface area of

the heating side is 350 x 300 mm, which is about 13.8 x 11.8 inches. The total weight

when mostly made of aluminum casting is around 20 kg, or 44.1 lbs. The flywheel has a

mass of 7.5 kg (16.5 lbs) and a diameter of 280 mm (11 inches). The working piston

diameter is 85 mm (3.35 inches), the restrictor piston diameter is 96 mm (3.78 inches),

and the stroke is 75 mm (2.95 inches). The engine was designed with air or nitrogen as

Page 49: Motore Stirling

47

working fluid at an operating pressure of up to 10bar (145psi). The method of heating it

arbitrary since it is a Stirling engine, but the prototype was heated with propane gas.

With a fuel flow rate of 225 gram/hour the engine produces 300 W mechanical work.

The gross calorific value for propane is 13.87 kWh/kg. The given mass flow rate equates

to 3.121 kW of heat input which is less than our estimated heat input from the

concentrating dish. There must be a source of constant water circulation to cool the

engine. If no water is delivered to a Sterling engine the temperature begins to equalize

after a matter of minutes, which soon stops the engine from running. The engine is

estimated to have an efficiency of 22%. The engine starts running at 200°C (392°F) and

produces 500W power output when near the max temperature of 650°C (1202°F). The

idling speed is approximately 800 rpm and the torque output is 8 Nm.

The cast set includes a majority of the parts necessary to build the engine. The

parts are sand-cast and therefore need further machining before they can be used in the

engine. The set includes the crankcase, quill, frame cover, cooler with guidance

restrictor, actuator, cylinder head, working piston and piston rods, restrictor, one

connecting tube elbow with flange, and one cooling water pick up flange. These parts are

all for use up to the 10 bar rated pressure. Some parts must be made in addition to the

cast parts. Standard parts like caps, seals, screws, pipe, and other miscellaneous items

must also be bought.

The following drawings are the only ones we have access to until we order the complete

drawing set. Included with the drawings is a detailed list of the additional materials

needed along with supply sources. The drawings include eleven sides text with seven

illustrations, four parts list in DIN A4 format, four detailed materials lists, one design in

Page 50: Motore Stirling

48

DIN A2, five designs in DIN A3, 55 designs in DIN A4, four sides manufacturing and

testing instruction sheets, and one report.

Figure 8.12 Two drawings of the ST 05 G (without generator)

A group of hobbyists called the German Study Group are working on Stirling

engines. The most powerful engines they are making are based of Mr. Viebach’s gamma

type engine design. They have created multiple variations of Viebach’s design, running

off of heat sources ranging from biomass to solar heat. Below is a 1kW unit that is based

on Mr. Viebach’s design and is currently being developed by Epas Products in Germany.

Page 51: Motore Stirling

49

Figure 8.13 EPAS Stirling BM 1000 uses biomass as a heat source

9.0 Tracking Control System In order to achieve the greatest potential ‘harvest’ of the suns energy at all times,

we need a system capable of tracking the sun’s movement across the sky. This tracking

system needs to be capable of continually adjusting the altitude and azimuth angles of our

parabolic reflector so as to keep the reflector under maximum solar irradiance. Also, this

system should be able to ignore transient shadows and lights from fast moving sources

such as clouds, shrubbery, and birds, and also ignore oscillations of the parabolic

reflector caused by wind. They system must also be capable of returning the parabolic

reflector to its original ‘home’ position in anticipation of the next sunrise.

The sun’s position is related in terms of several different angles, but for

simplicity, its position can mainly be based on its altitude and azimuth angle. All the

sun-angle relationships, however, are based on solar time. Solar time is the apparent

Page 52: Motore Stirling

50

angular motion of the sun across the sky, with solar noon being the time when the sun

crosses the meridian of the observer. Solar time is calculated by applying two different

correction factors to the local standard time. The first correction factor is a constant

which is a correction for the difference in longitude between the observers meridian and

the meridian on which the local standard time, Lst, is based. For the continental United

States time zones, the standard meridians are: Eastern - 75°W; Central - 90°W; Mountain

- 105°W; and Pacific - 120°W. The second correction factor takes in account the

perturbations in the earth’s rate of rotation. This second correction factor is found from

the equation of time,

))2sin(04089.0)2cos(014615.0)sin(032077.0)cos(001868.0000075.0(2.229

BBBBE

−−−+=

K

K (9.1)

where

365360)1( −= nB (9.2)

and n is equal to the day of the year, thus 1[n[365. The difference in minutes between

solar time and standard time is thus

Solar time – standard time = 4(Lst-Lloc) + E (9.3)

Page 53: Motore Stirling

51

where Lloc is the longitude of the location in question measured in degrees west. It is also

a known fact that it takes the sun four minutes to transverse 1 degrees of longitude.

Tallahassee is located in the Eastern time zone, therefore the standard meridian, Lst, for

Tallahassee is 75°W, and its longitude is 84.28°W. For calculation purposes, considering

the 365th day of the year, the correction to standard time is –2.64minutes, thus making

12-noon Eastern Standard Time equal to approximately 11:47:36 AM solar time. This

means that the sun will cross directly overhead of Tallahassee at 12:02:64 PM Eastern

Standard Time on the 365th day of the year. Appendix C shows how this calculation was

performed and Figure C-1 of Appendix C shows the equation of time as a function of

time of year for Tallahassee.

By knowing the solar time, you can find when the sun will be directly overhead

for that particular day, which will aid in locating the altitude and azimuth angle of the

sun. The solar altitude angle, αs, is the angular distance above the horizon, with a

maximum of 90 degrees. The azimuth angle, γs, of the sun, is the angular distance

measured along the horizon in a clockwise direction. Figure 1.1 shows the relations of

the different angles used in determining the suns position in the sky.

Page 54: Motore Stirling

52

Figure 9.1 Angles related to position of sun and view showing azimuth angle.

The tracking system for the collector will have two axis of motion. The system

will have 90° of altitude travel and 240° of azimuth travel. The altitude drive will range

from 0° to 90°, as measured from the horizontal, and the azimuth drive will travel from

60° to 300°. This will allow for the collector to remain in the direct sunlight throughout

the day. A single Quadrant Photodiode (4-element array) Amplification Module will be

used to control both axes. The module planned for used is Phresh Phontonics’ SiQu50-M

module. The SiQu50-M combines a Silicon Quadrant Photodiode with amplifiers and

position sensing circuitry, which provides output voltages of both the sum of the axes and

of each axis independently. The Silicon Photodiodes produce a current that is

proportional to the light falling on it. The detector is made of one monolithic piece of

Silicon, thus the response from each element will be identical. By a comparison of the

produced currents, the location of the light can then be determined. When each of the

four elements produces an equal current, the source of light is centered. The outputs for

the azimuth (X) and altitude (Y) angels can be compared as follows:

Page 55: Motore Stirling

53

X=[(i1+i2)-(i3+i4)] 104/(i1+i2+i3+i4) (9.4)

Y=[(i1+i4)-(i2+i3)] 104/(i1+i2+i3+i4) (9.5)

This current is then converted and amplified to a useable voltage. The voltage input

needed to control the module ranges from 5 to 18 volts. The sensing area of the module

is 50 square millimeters, and has a spectral response of 400 to 100 nanometers with an

output voltage of –Vcc-3/-Vcc+3. Appendix D shows an electrical diagram of the SiQu50-

M module and a drawing of its outer casing. An issue that may need to be considered in

the future with this product is the intensity of the light beam falling on the module, which

could, if needed, be taken care of my creating a ‘mask’ for the module. All adjustments

for the tracking system should be made on a clear day so as to have few clouds to

interfere with setting procedures.

10.0 Frame

For the chosen design, all of the components of the system are located at the focal

point of the dish. A frame is to be constructed which is capable of withstanding the

forces and moments that will be experienced at the focal point of the dish. The frame

will have to securely house the heat containment unit, the stirling engine, and the

generator. It is approximated that the maximum weight to be loaded at the focal point of

the dish is 500 pounds. Because of this, it was decided that the frame should be

constructed out of carbon steel square tubing and flat bar. It may seem a bit over-kill, but

it leaves little chance for failure.

Page 56: Motore Stirling

54

Aside from the structural design of the frame, it must also be capable of

maneuvering the dish to track the sun. The frame must move the dish in both the altitude

and azimuth directions; 90 degrees from the horizon in the altitude direction, and 240

degrees in the azimuth direction. This is to be accomplished by use of two separate linear

actuators, which work in conjunction with the Silicon Quadrant Photodiode module.

Preliminary drawings of the frame for the system are located in Appendix E.

Page 57: Motore Stirling

55

Appendix A

Responsible Input OutputTeam

"""

Team"

Asegun Books and Model Information Working Estimates

Chris and Dustin Smaller dish and stirling engine

Temperature and Heat Transfer

EstimateTeamTeam

"""

ChrisForms, Vendor

Location, Trip Plan, Setup Location

Begin Assembly, Perform Tests and

Calculations

Team Mylar and AdhesiveRun actual test to

calculate temperature and heat transfer

DustinCurrent components

and design optimization scheme

Optimized, robust functioning design

Chris and Hunter

Current design, motors, dish

infastructure and supports

Optimized radiation input

Team"""

HunterLocate Vendor and determine optimal

design

Begin Assembly, Perform Tests and

Calculations

Asegun Fluid Selection and Vendor Location

Calculations of heat storage and final

optimization of design

Dustin and HunterLocate Vendor and

obtain required specs and output

Begin system tests for efficiency, cycling,

and fatigue

Asegun and Chris

Locate Vendor, RPM Requirement

correlated with engine output

Meet 1kW requirement; begin work on robustness

and consistencyTeam

"""

Team""

Team

4.0 Product Development

3.0 Design

2.2 Calculations

5.1 Assembly

3.3.7 Heat Storage

3.3.8 Stirling Engine

3.3.9 Generator

3.3.5.a Windows 20003.3.5.b Labview3.3.5.c C++

5.2 Testing6.0 Delivery of Product

5.0 Construction of System

4.1 Drawings4.2 Ordering/Obtaining Parts4.3 Machining

3.3.6 Parabolic Mirror

3.3.2 Aluminized Mylar

3.3.3 Frame

3.3.4 Tracking System

3.3.5 Operating System

3.1 Materials Selection3.2 Materials Location3.3 Components

3.3.1 Parabolic Dish

2.2 Initial Testing

2.3 Concept to Prototype

1.1.1 Needs Statement1.1.2 Product Specifications

2.0 Research and Conceptualization2.1 Design Concepts

Activity1.0 Meet with Sponsor

1.1 Customer Needs

Page 58: Motore Stirling

56

Appendix B

Page 59: Motore Stirling

57

Appendix C

0 100 200 300 40020

10

0

10

20E as a function of time of year

Time of year (Days)

Equa

tion

of T

ime

(Min

utes

)

E n( )

n

solartime n( )8.44816.7

13.66-2.87227.7365.1227.991

14.40211.97815.105-2.23726.8086.847

=

solartime n( ) 4 Lst Lloc−( ) E n( )+ standardtime+:=E n( )-2.9045.3482.307

-14.22416.384

-6.23-3.362

3.050.6263.753

-13.58915.456-4.505

=

E n( ) 229.2 0.000075 0.001868cos B n( )( )+ 0.032077sin B n( )( )− 0.014615cos 2B n( )( )− 0.04089sin 2B n( )( )−( ):=

B n( ) n 1−( )360365⋅:=

n 1 31, 365..:=

standardtime 12:=Lloc 84.28deg:=Lst 75deg:=

solartime 2.638−=

solartime 4 Lst Lloc−( ) E+ standardtime+:=

E 13.99−=

E 229.2 0.000075 0.001868cos B( )+ 0.032077sin B( )− 0.014615cos 2B( )− 0.04089sin 2B( )−( ):=

B n 1−( )360365⋅:=

n 365:=

standardtime 12:=Lloc 84.28deg:=Lst 75deg:=

Solar time for Tallahassee

Page 60: Motore Stirling

58

Appendix D

Figure D-1 Electrical Schematic of SiQu50-M module

Figure D-2 Drawing of SiQu50-M module

Page 61: Motore Stirling

59

Appendix D cont’d

Page 62: Motore Stirling

60

Appendix E

Page 63: Motore Stirling

61

Appendix E cont’d

Page 64: Motore Stirling

62

Appendix F Stirling Engine References http://www.stirlinghotairengine.com/about.htm

www.precision-d.com/stirling/proposal.html http://www.ent.ohiou.edu/~urieli/stirling/engines/ http://www.ent.ohiou.edu/~urieli/stirling/engines Solo http://www.stirling-engine.de/engl/solare_energiesysteme.html Sandia Labs http://www.energylan.sandia.gov/sunlab/contacts.htm STM Power http://www.stmpower.com/Contact.asp Tamin Enterprises http://www.tamin.com/company.htm Sunpower http://www.sunpower.com/contact/contact.html STC http://stirlingtech.com/about/contact.shtml WhisperGen http://whispertech.co.nz/contact.html Japanese Inventor http://www.bekkoame.ne.jp/~khirata/ Sunmachines http://www.sunmachine.de/english/main.html