MOSFET Common Source Amplifierstorage.googleapis.com/wzukusers/user-19186504/documents...MOSFET...

of 37 /37
Slide 1 BITS Pilani, Dubai Campus Lecture on Microelectronics Circuits Dr. Vilas Microelectronic Circuits MOSFET Common Source Amplifier

Embed Size (px)

Transcript of MOSFET Common Source Amplifierstorage.googleapis.com/wzukusers/user-19186504/documents...MOSFET...

  • Slide 1 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Microelectronic Circuits

    MOSFET Common Source

    Amplifier

  • Slide 2 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Small signal Model

    The definition of Transconductance

    The definition of output resistance

    The definition of voltage gain

    OVn

    VvGS

    Dm V

    L

    Wk

    v

    ig

    GSGS

    '

    D

    A

    IiD

    DSo

    I

    V

    i

    vr

    DD

    Dm

    i

    ov Rg

    v

    vA

  • Slide 3 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Small signal model

    (a) neglecting the channel-length modulation effect

    (b) including the effect of channel-length modulation, modeled by output resistance ro = |VA| /ID.

  • Slide 4 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Small signal model

    (a) The T model of the MOSFET augmented with the drain-to-source resistance ro.

    (b) An alternative representation of the T model.

  • Slide 5 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Single Stage Cs Amplifier

    Input resistance with no load

    Input resistance

    Open-circuit voltage gain

    Voltage gain

    LRi

    ii

    i

    vR

    LRi

    ovo

    v

    vA

    i

    ov

    v

    vA

    i

    ii

    i

    vR

    Open-circuit overall voltage gain

    overall voltage gain

    LRsig

    vov

    vG 0

    sig

    vv

    vG 0

  • Slide 6 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Single Stage Cs Amplifier

  • Slide 7 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Single Stage Cs Amplifier

    Small Signal equivalent circuit

  • Slide 8 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Single Stage Cs Amplifier

    Input resistance

    Voltage gain

    Overall voltage gain

    Output resistance

    Gin RR

    )////( LDomv RRrgA

    )////( oLDmsigG

    Gv rRRg

    RR

    RG

    Doout RrR //

  • Slide 9 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Source Amplifier

    Very high input resistance

    Moderately high voltage gain

    Relatively high output resistance

  • Slide 10 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    CS Amplifier with Source resistance

  • Slide 11 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    CS Amplifier with Source resistance

  • Slide 12 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    CS Amplifier with Source resistance

    Input resistance

    Voltage gain

    Overall voltage gain

    Output resistance

    Gin RR

    Sm

    LDmv

    Rg

    RRgA

    1

    )//(

    Sm

    LDm

    sigG

    Gv

    Rg

    RRg

    RR

    RG

    1

    )//(

    Dout RR

  • Slide 13 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    CS Amplifier with Source resistance

    Including RS results in a gain reduction by the factor (1+gmRS)

    RS takes the effect of negative feedback.

  • Slide 14 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Gate Amplifier

  • Slide 15 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Gate Amplifier

  • Slide 16 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Gate Amplifier

    Input resistance

    Voltage gain

    Overall voltage gain

    Output resistance

    min gR /1

    )( LDmv RRgA //

    Dout RR

    sigm

    LDmv

    Rg

    RRgG

    1

    )( //

  • Slide 17 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Gate Amplifier

    Noninverting amplifier

    Low input resistance

    Has nearly identical voltage gain of CS amplifier, but the

    overall voltage gain is smaller by the factor (1+gmRsig)

    Relatively high output resistance

    Current follower

    Superior high-frequency performance

  • Slide 18 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Drain or voltage follower

  • Slide 19 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Drain or voltage follower

  • Slide 20 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Drain or voltage follower

    Input resistance

    Voltage gain

    Overall voltage gain

    Output resistance

    Gin RR

    mL

    Lv

    gR

    RA

    1

    mL

    L

    sigG

    Gv

    gR

    R

    RR

    RG

    1

    mout

    gR

    1

  • Slide 21 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    Common Drain or voltage follower

    Very high input resistance

    Voltage gain is less than but close to unity

    Relatively low output resistance

    Voltage buffer amplifier

    Power amplifier

  • Slide 22 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    MOSFET Internal Capacitances

    The MOSFET Internal Capacitance and High-Frequency Model

    Internal capacitances

    The gate capacitive effect

    Triode region

    Saturation region

    Cutoff region

    Overlap capacitance

    The junction capacitances

    Source-body depletion-layer capacitance

    Drain-body depletion-layer capacitance

  • Slide 23 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    MOSFET Internal Capacitances

    The MOSFET Internal Capacitance and High-Frequency Model

    MOSFET operates at triode region

    MOSFET operates at saturation region

    MOSFET operates at cutoff region

    oxgdgs WLCCC 21

    0

    32

    gd

    oxgs

    C

    WLCC

    oxgb

    gdgs

    WLCC

    CC 0

  • Slide 24 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    MOSFET Internal Capacitances

    The MOSFET Internal Capacitance and High-Frequency Model

    Overlap capacitance results from the fact that the source and drain diffusions extend slightly under the gate oxide. The expression for overlap capacitance

    Typical value

    This additional component should be added to Cgs and Cgd in all preceding formulas.

    oxovov CWLC

    LLov 1.005.0

  • Slide 25 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    MOSFET Internal Capacitances

    The MOSFET Internal Capacitance and High-Frequency Model

    Source-body depletion-layer capacitance

    Drain-body depletion-layer capacitance

    o

    SB

    sbsb

    V

    V

    CC

    +1

    0

    o

    DB

    dbdb

    V

    V

    CC

    +1

    0

    Csb at zero body-source bias

    Magnitude of reverse bias voltage

    Built in voltage (0.6V to 0.8V)

  • Slide 26 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    The MOSFET Internal Capacitance and High-Frequency Model

    gmVgsR’L

    Cgd

    Cgs

    G D

    S

    +

    Vo

    -

    +

    Vgs

    -

    Gsig

    '

    sigR||RR

    sigG

    G

    sigRR

    RV

    LDo

    '

    LR||R||rR

  • Slide 27 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    The MOSFET Internal Capacitance and High-Frequency Model

    Thevenin’s Equivalent Parallel Combination

    This circuit can be further simplified

  • Slide 28 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    gmVgsR’L

    Cgd

    Cgs

    G D

    S

    +

    Vo

    -

    +

    Vgs

    -

    Gsig

    '

    sigR||RR

    sigG

    G

    sigRR

    RV

    X

    X’

    Igd

    Cgd is a bridging capacitor , which connects the output node to the input node.

  • Slide 29 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    gmVgsR’L

    Cgd

    Cgs

    G D

    S

    +

    Vo

    -

    +

    Vgs

    -

    Gsig

    '

    sigR||RR

    sigG

    G

    sigRR

    RV

    X

    X’

    Igd

    The load current = )( gdgsm IVg

    gs

    '

    Lm

    '

    LgsmoVRgR)Vg(V

  • Slide 30 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    gmVgsR’L

    Cgd

    Cgs

    G D

    S

    +

    Vo

    -

    +

    Vgs

    -

    Gsig

    '

    sigR||RR

    sigG

    G

    sigRR

    RV

    X

    X’

    Igd

    gs

    '

    Lmgd

    gs

    '

    Lmgsgd

    ogsgdgd

    VRgsC

    VRgVsC

    VVsCI

    1

  • Slide 31 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    gmVgsR’L

    Cgd

    Cgs

    G D

    S

    +

    Vo

    -

    +

    Vgs

    -

    Gsig

    '

    sigR||RR

    sigG

    G

    sigRR

    RV

    X

    X’

    Igd

    At XX’ the existence of Cgd is known through the current Igd, so Cgd can be replaced by Ceq

  • Slide 32 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    Look at the input part of the circuit , which is a single time constant circuit of low –pass type.

  • Slide 33 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    0

    1

    1

    w

    sV

    RR

    RV

    sig

    sigG

    G

    gs

    Gsigsig

    Lmgdgseqgsin

    sigin

    RRR

    RgCCCCCwhereRC

    w

    ||

    )(,

    '

    '

    '

    11

    circuitSTCoffrequencybreakorcorneriswwhere

    0

    0

  • Slide 34 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    gs

    '

    Lm

    '

    LgsmoVRgR)Vg(V

    0

    1

    1

    w

    sV

    RR

    RV

    sig

    sigG

    G

    gs

    0

    1

    1

    w

    s)Rg(

    RR

    R

    V

    V 'Lm

    sigG

    G

    sig

    o

    Combining We get,

  • Slide 35 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    Which can be expressed in the form

    Mid band gain

    H

    M

    sig

    o

    w

    s

    A

    V

    V

    1

    '

    sigin

    H

    H

    '

    sigin

    H

    RC

    wfand

    RCww

    2

    1

    2

    10

  • Slide 36 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    Thus we can see that, high frequency response will be that of a low pass filter. With 3dB cut off frequency fH

    3dB

    20 log|AM|

    dBV

    V

    sig

    o

    f (Hz)

    (log scale)

    fH

  • Slide 37 BITS Pilani, Dubai Campus

    Lecture on Microelectronics Circuits Dr. Vilas

    High Frequency Response

    Find the midband gain AM and the upper 3-dB frequency fH

    of a CS amplifier fed with a signal source having an internal

    resistance Rsig = 100kΩ. The amplifier has RG = 4.7MΩ, RD , RL

    =15kΩ, gm = 1mA/V, r0 = 150kΩ, Cgs = 1pF and Cgd = 0.4pF.

    For the CS amplifier for above example, find the value of AM

    and the upper 3-dB frequency fH if the source resistance

    reduced to Rsig = 10kΩ.

    Ans: -7. 12V/V, 3.7MHz.