MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf•...

24
MOS Inverters Digital Electronics - INEL 4207 Prof. Manuel Jiménez With contributions by: Rafael A. Arce Nazario Objectives: Introduce MOS Inverter Styles Resistor Load Enhancement Load – Saturated / Linear Depletion Complementary (CMOS) Perform DC analysis of the circuits

Transcript of MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf•...

Page 1: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

MOS InvertersDigital Electronics - INEL 4207

Prof. Manuel Jiménez

With contributions by: Rafael A. Arce Nazario

Objectives:• Introduce MOS Inverter Styles

•Resistor Load•Enhancement Load – Saturated / Linear•Depletion•Complementary (CMOS)

• Perform DC analysis of the circuits

Page 2: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

• Operation regions (Enhancement)– VGS <VT :cutoff ,Vout =VDD

– VGS >VT ,VDS >VGS -VT : saturation– VGS >VT ,VDS <VGS -VT : linear

Ideal Inverter

MOS Devices

Page 3: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

• Operation regions

• VGS <VT :cutoff ,Vout =VDD

• VGS >VT ,VDS <(VGS -VT ): linear

• VGS >VT ,VDS >(VGS -VT ): saturation

MOS Devices

0≈DI

2)(2 TGSD VVkI −=

[ ]2)(22 DSDSTGSD VVVVkI −−=

)1()(2

2DSTGSD VVVkI λ+−=

K=device transconductanceλ

= channel-length modulation

Page 4: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

• VOH = max output voltage when output is “1”

• VOL = min output voltage when output is “0”

• VIL = max input voltage which can be interpreted as “0”

• VIH = min input voltage which can be interpreted as “1”

Static Parameters

Vin

VOH=VDD

VM

VOL

VM

Vout

VIL VIH

VOH=VDD

VM

VOL

VM

Vout

VIL VIH

Page 5: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

VOH =VDD

VM

VOL

VT VM VOH =VDD

Vout

Vin

Vout =Vin

Vout =Vin -VT

VIL VIH

MOS Inverter - Resistor Load

IN

OUT

VDD

RL

|VGS | <VT device is open circuit

| VGS | > VT device conducts with resistance RON

Page 6: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

VOH

DDOH VV =

( )

( )TDDL

DDOL

L

OLDDOLOLTDD

RlinD

VVkRVV

RVVVVVVk

II

−+≅⇒

−=⎥

⎤⎢⎣

⎡−−

=

1

2

2

)(

MOS Inverter - Resistor Load : Parameters

VOL Assumption: Must verify latter

Page 7: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

MOS Inverter - Resistor Load : Parameters - VIL

( ) ( )

( )

LTIL

LTinD

out

in

D

in

out

LL

outDD

outout

D

D

out

TinTininin

D

D

out

in

D

in

out

kRVV

RVVkdI

dVdVdI

dVdV

RR

VVdV

ddVdI

dIdV

VVkVVkdV

ddVdI

dIdV

dVdI

dVdV

1

1

2

1

11

2

+=

−=−−=−=

−=⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ −=⎟⎟

⎞⎜⎜⎝

⎛=

−=−=

−=−=

−−

( )

1

22

−=

−=−

in

out

L

outDDTGS

dVdV

RVVVVk

Page 8: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

[ ]( )

2

0.1

0.1

Tinout

DSTGS

DS

D

DS

GS

D

in

out

D

out

in

D

in

out

VVV

VVVkkV

dIdV

dVdI

dVdV

dIdV

dVdI

dVdV

−=

−=−−

−=−=

−=−=

( )[ ]L

outDDoutoutoutTIH R

VVVVVVVk −=−− 22

2

( )L

TIH

L

DDTIHTIHTIH R

VVR

VVVVVVVk222

12

2 −−=

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −

−⎟⎠⎞

⎜⎝⎛ −

…solve quadratic expression by VIH

MOS Inverter - Resistor Load : Parameters - VIH

…substitute in (1)

(1)

Page 9: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

VM

( )

( )

( ) ( )L

TDDT

L

TDDLTM

L

DDT

LTMM

MDDTM

DSDDRTGSDS

kRVVV

kRVVkR

VV

kRVV

kRVVV

RVVVVk

RVVIVVkI

−+≅

−−++=⇒

=⎟⎟⎠

⎞⎜⎜⎝

⎛−+⎟⎟

⎞⎜⎜⎝

⎛−−

−=−

−==−=

2121

0212

2

2

22

2

2

MOS Inverter - Resistor Load : Parameters - VM

Page 10: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

Effect of RL on VTC

As RL increases

But putting a larger resistance would also mean:• larger resistor length• greater switching delays

main disadvantage of resistor load:• occupies to much chip area (10s or 100s times the area of a single transistor!)

Page 11: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

Using enhancement transistors as load devices

• Justification: Since VLSI resistors occupy to much chip space use transistor in either saturation or linear region instead of resistor

VDD

Vin

Vout

VDD

VinVOUT

VGG

Page 12: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

VDD

Vin

Vout

• Enhancement NMOS with VGS = VDS

while VOUT < VDD – VTthe transistor will be in saturationbecause VGS > VT & VDS > VGS -VT

If VOUT tries to go above VDD-VT , transistor goes cutoff(because VGS < VT )

Saturated enhancement load

Page 13: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

INV

OUTV

= VT

VIL VIH

VOH

VOL

Slope = -1

Slope =

=VDD- VT(VOH)

RK

load

inverterR LW

LWK)/(

)/(=

VDD

Vin

Vout

Saturated enhancement load - VTC

( )FFSBTT VVV φφγ 220 −++=

Page 14: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

• Enhancement NMOS with VGG > VDD +VT

since VDS = VDD-VOUTand VGS = VGG -VOUT > VDD +VT –VOUT

VDS < VGS - VT

since VGS > VT : the load is always on linear region

VDD

VinVOUT

VGG

Linear enhancement load

Page 15: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

Pro:• VOH = VDD

Disadvantage:• Additional voltage source• KR must be even larger than for saturated load for decent slope

Linear enhancement load - VTC

Page 16: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

VDD

Vin

Vout

• Depletion NMOS with VGS = 0

VGS > VT : always conducting

Depletion load

Good: VOH = VDDno additional V source

Bad: addit. fab. process steps

Page 17: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

Complementary MOSFET inverter

Features:• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in the same logic gate.+ All static parameters of CMOS inverters are superior to those of NMOS inverters+ CMOS is the most widely used digital circuit technology in comparison to other logic families.· lowest power dissipation · highest packing density -Increased process complexity (to provide isolated transistors of both polarity types)

Page 18: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

Complementary MOSFET (CMOS) inverter

S

D

S

D

Intuitively:VIN ≈

0

NMOS open ckt. (VGSn <VTn )PMOS conducting (VGSp > VTp )

VOUT = VDD

VOH = VDD (Good!)

VIN ≈

VDDNMOS conductingPMOS open ckt.

VOUT = 0

VOL = 0 (Great!)

Page 19: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

1. PMOS linear, NMOS off

2. PMOS linear, NMOS sat

3. PMOS, NMOS both sat

4. PMOS sat, NMOS linear

5. PMOS off, NMOS linear

CMOS inverter - VTC

Page 20: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

12

VOH =VDD

VM

VTn VM VOH =VDDVOL =0

Vout

-VTp

3

45

VDD -VTp

VIN =VTn +

2

PMOS linear, NMOS saturation

RegionCMOS inverter – Region 2

Page 21: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

NMOS linear, PMOS saturation

CMOS inverter – Param. Calculation Example Calculate VIH

2|)||(|2 TpGSp

pDp VV

kI −=

[ ]2)(22 OUTOUTTnIHn

Dn VVVVkI −−=

)/(1|)|)(/(2

1)(

)(

1

np

TPDDnpTnOUTIH

TnOUTIHn

TpIHDDpOUTn

in

out

DnDp

out

in

DnDp

in

out

kkVVkkVV

V

VVVkVVVkVk

dVdV

dIdIdV

dVdIdI

dVdV

+

−++=

−=−−

−−+−=

−=−

−−=

Substitute in (1), then solve for VOUT , finally obtain VIH

(1)

Page 22: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

NMOS & PMOS saturation

CMOS inverter – Param. Calculation Example Calculate VM

22

2

2

|)|(2

|)||(|2

|)||(|2

|)||(|2

TpMDDp

TnMn

TpGSpp

Dp

TnGSnn

Dn

VVVk

VVk

VVk

I

VVkI

−−=−

−=

−=

.. Solve for VM

Page 23: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

Summary

• CMOS inverter – most used, smallest, lowest power dissipation, best inverter characteristics.…base for more complex logic gates

• Calculation of static parameters: VIH , VIL , VOH , VOL , VM .

•Important: Deduce the region of operation of the transistors (verify later)• VIH , VIL slope = -1, use chain rule to simplify calculations• VTC affected by R, KR

Page 24: MOS Inverters - Engineeringece.uprm.edu/~mjimenez/inel6080/support_files/Lecture_11.pdf• Complementary MOS (CMOS) Inverter analysis makes use of both NMOS and PMOS transistors in

Recordatorio

• Buscar copias de Dr. Jimenez en Reproducciones ($1-$2) – “Digital circuits using MOS transisitors”