MOS Field-Effect Transistors (MOSFETs)

132
1 MOS Field-Effect Transistors (MOSFETs)

description

MOS Field-Effect Transistors (MOSFETs). 1. Figure 4.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross-section. Typically L = 0.1 to 3 m m, W = 0.2 to 100 m m, and the thickness of the oxide layer (t ox ) is in the range of 2 to 50 nm. - PowerPoint PPT Presentation

Transcript of MOS Field-Effect Transistors (MOSFETs)

Page 1: MOS Field-Effect Transistors (MOSFETs)

1

MOS Field-EffectTransistors (MOSFETs)

Page 2: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 2Copyright 2004 by Oxford University Press, Inc.

Figure 4.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross-section. Typically L = 0.1 to 3 m, W = 0.2 to 100 m, and the thickness of the oxide layer (tox) is in the range of 2 to 50 nm.

Page 3: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 3Copyright 2004 by Oxford University Press, Inc.

Figure 4.2 The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is induced at the top of the substrate beneath the gate.

Ingat pada p-n junction

Page 4: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 4Copyright 2004 by Oxford University Press, Inc.

Figure 4.3 An NMOS transistor with vGS > Vt and with a small vDS applied. The device acts as a resistance whose value is determined by vGS. Specifically, the channel conductance is proportional to vGS – Vt’ and thus iD is proportional to (vGS – Vt) vDS. Note that the depletion region is not shown (for simplicity).

Page 5: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 5Copyright 2004 by Oxford University Press, Inc.

Figure 4.4 The iD–vDS characteristics of the MOSFET in Fig. 4.3 when the voltage applied between drain and source, vDS, is kept small. The device operates as a linear resistor whose value is controlled by vGS.

Page 6: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 6Copyright 2004 by Oxford University Press, Inc.

Figure 4.5 Operation of the enhancement NMOS transistor as vDS is increased. The induced channel acquires a tapered shape, and its resistance increases as vDS is increased. Here, vGS is kept constant at a value > Vt.

Page 7: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 7Copyright 2004 by Oxford University Press, Inc.

Figure 4.6 The drain current iD versus the drain-to-source voltage vDS for an enhancement-type NMOS transistor operated with vGS > Vt.

Page 8: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 8Copyright 2004 by Oxford University Press, Inc.

Figure 4.7 Increasing vDS causes the channel to acquire a tapered shape. Eventually, as vDS reaches vGS – Vt’ the channel is pinched off at the drain end. Increasing vDS above vGS – Vt has little effect (theoretically, no effect) on the channel’s shape.

Page 9: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 9Copyright 2004 by Oxford University Press, Inc.

Figure 4.8 Derivation of the iD–vDS characteristic of the NMOS transistor.

ox

oxox t

C

Kapasitansi gate-channel

(dielektrik SiO2) per

satuan area (1)

Equipotential pada arah y (melebar)

Muatan tersimpan dalamKapasitor (3)

VCQ

(2)

Muatan tersimpan dalam“potongan” equipotensial(4)

tGSox VxvvdxWCdq )(

Page 10: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 10Copyright 2004 by Oxford University Press, Inc.

Figure 4.8 Derivation of the iD–vDS characteristic of the NMOS transistor.

tGSox VxvvWCdx

dq )(

Muatan pada celah potongan sehingga

Medan listrik pada “potongan”

dx

xdvxE

Laju elektron (drift)Karena medan listrik

dx

xdvxE

dt

dxnn

Arus drift pada celah “potongan”

dt

dx

dx

dq

dt

dqi

tGSox VxvvdxWCdq )(

dx

xdvVxvvWCi tGSoxn )(

Page 11: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 11Copyright 2004 by Oxford University Press, Inc.

dx

xdvVxvvWCii tGSoxnD )(

Arus drain yang disebabkan arus drift pada celah “potongan”

xdvVxvvWCdxi tGSoxnD )(

dapat disusun menjadi

Integrasi dengan batas sourcedan drain atau x antar 0 dan L

dan tegangan 0 dan vDS

DSv

tGSoxn

L

D xdvVxvvWCdxi00

)(

memberikan

2

2

1DSDStGSoxnD vvVv

L

WCi

Untuk saturasi tGSDsat Vvv arus drain menjadi 22

1tGSoxnD Vv

L

WCi

Page 12: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 12Copyright 2004 by Oxford University Press, Inc.

22

1tGSoxnD Vv

L

WCi

2

2

1DSDStGSoxnD vvVv

L

WCi definisi konstanta

oxnn Ck '

2'

2

1DSDStGSnD vvVv

L

Wki

2'

2

1tGSnD Vv

L

Wki

Page 13: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 13Copyright 2004 by Oxford University Press, Inc.

Figure 4.9 Cross-section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate n-type region, known as an n well. Another arrangement is also possible in which an n-type body is used and the n device is formed in a p well. Not shown are the connections made to the p-type body and to the n well; the latter functions as the body terminal for the p-channel device.

Page 14: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 14Copyright 2004 by Oxford University Press, Inc.

Potonganmelintang

Layout

Page 15: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 15Copyright 2004 by Oxford University Press, Inc.

Figure 4.10 (a) Circuit symbol for the n-channel enhancement-type MOSFET. (b) Modified circuit symbol with an arrowhead on the source terminal to distinguish it from the drain and to indicate device polarity (i.e., n channel). (c) Simplified circuit symbol to be used when the source is connected to the body or when the effect of the body on device operation is unimportant.

Perhatikan: arah panah menunjukkan arah junction seperti pada dioda

Kanal tipe n dan bodi tipe p

Page 16: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 16Copyright 2004 by Oxford University Press, Inc.

Figure 4.11 (a) An n-channel enhancement-type MOSFET with vGS and vDS applied and with the normal directions of current flow indicated. (b) The iD–vDS characteristics for a device with k’n (W/L) = 1.0 mA/V2.

Perilaku arus-tegangan MOSFET dan Daerah Operasinya

Pengukuran/ Karakterisasi

Page 17: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 17Copyright 2004 by Oxford University Press, Inc.

Daerah Trioda

tGS Vv Syarat1. kanal terbentuk2. Kanal kontinyu

“Bentuk” Kanal

Kanal kontinyu atau tegangan gate-drain masihmembentuk kanal (daerah deplesi belumterlalu besar sehingga membuat kanalPinch-off)

tGD Vv

atau tGSDS Vvv

2'

2

1DSDStGSnD vvVv

L

Wki

Persamaan arus-tegangan

Page 18: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 18Copyright 2004 by Oxford University Press, Inc.

Daerah Trioda

2'

2

1DSDStGSnD vvVv

L

Wki

Persamaan arus-tegangan

untuk

menjadi DStGSnD vVvL

Wki '

tGSDS Vvv 2

1

'

tGSn

Vv

kecilvD

DSDS Vv

L

Wk

i

vr

GSGS

DS

dapat dinyatakan sebagai

Dengan definisi tGSOV VVV

menjadiOVn

DS

VL

Wk

r'

1

syarat OVDS Vv 2

Mengapa DS huruf kapital?

Page 19: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 19Copyright 2004 by Oxford University Press, Inc.

Daerah Saturasi

tGS Vv Syarat1. kanal terbentuk2. Pinch-off

“Bentuk” Kanal

Kanal pinch-off, tegangan gate-drain tidaklagi membentuk kanal, arus drain hanyaditentukan jumlah muatan yang dibentuktegangan gate pada kanal

tGD Vv

atau tGSDS Vvv

Persamaan arus-tegangan

2'

2

1tGSnD Vv

L

Wki

Page 20: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 20Copyright 2004 by Oxford University Press, Inc.

Figure 4.12 The iD–vGS characteristic for an enhancement-type NMOS transistor in saturation (Vt = 1 V, k’n W/L = 1.0 mA/V2).

Daerah Saturasi

Persamaan arus-tegangan

2'

2

1tGSnD Vv

L

Wki

GSDS vv

Untuk drain-gate terhubungsingkat

2'

2

1DSnD v

L

Wki

MOSFET selalu saturasikarena 0tV

Page 21: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 21Copyright 2004 by Oxford University Press, Inc.

Figure 4.13 Large-signal equivalent-circuit model of an n-channel MOSFET operating in the saturation region.

Page 22: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 22Copyright 2004 by Oxford University Press, Inc.

Figure 4.14 The relative levels of the terminal voltages of the enhancement NMOS transistor for operation in the triode region and in the saturation region.

Page 23: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 23Copyright 2004 by Oxford University Press, Inc.

Figure 4.15 Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by DL).

Setelah mencapai saturasi apabila tegangan drain-source masih dinaikkan, maka panjang kanal berkurang

2'

2

1tGSnD Vv

LL

Wki

2'

/1

1

2

1tGSnD Vv

LLL

Wki

1/ LL 2' /12

1tGSnD VvLL

L

Wki

2' 12

1tGSDSnD Vvv

L

Wki

Persamaan arus semula

2'

2

1tGSnD Vv

L

Wki

menjadi

disusun ulang

untuk dapat didekati dengan

LL / sebanding dengan DSv

dan dapat dinyatakan denganDSv

L

L sehingga

Page 24: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 24Copyright 2004 by Oxford University Press, Inc.

Figure 4.16 Effect of vDS on iD in the saturation region. The MOSFET parameter VA depends on the process technology and, for a given process, is proportional to the channel length L.

2' 12

1tGSDSnD Vvv

L

Wki

0Di 1

AV

1

tetapvDS

Do

GSv

ir

12'

2

1

tGSno VV

L

Wkr

Do I

r

1D

Ao I

Vr

untuk maka

Definisikan maka

sehingga atau dimana 2'

2

1tGSnD VV

L

WkI

ID

Page 25: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 25Copyright 2004 by Oxford University Press, Inc.

Figure 4.17 Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance ro. The output resistance models the linear dependence of iD on vDS and is given by Eq. (4.22).

D

Ao I

Vr

2'

2

1tGSnD VV

L

WkI

Page 26: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 26Copyright 2004 by Oxford University Press, Inc.

Figure 4.18 (a) Circuit symbol for the p-channel enhancement-type MOSFET. (b) Modified symbol with an arrowhead on the source lead. (c) Simplified circuit symbol for the case where the source is connected to the body. (d) The MOSFET with voltages applied and the directions of current flow indicated. Note that vGS and vDS are negative and iD flows out of the drain terminal.

Daerah Trioda

tSG Vv Syarat1. kanal terbentuk2. Kanal kontinyu tGSDS Vvv

2'

2

1DSDStGSpD vvVv

L

Wki

Persamaan arus-tegangan

oxpp Ck 'dengan

Daerah SaturasiSyarat1. kanal terbentuk2. Pinch-off

Persamaan arus-tegangan

2'

2

1tGSpD Vv

L

Wki

tGSDS Vvv

Page 27: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 27Copyright 2004 by Oxford University Press, Inc.

Figure 4.19 The relative levels of the terminal voltages of the enhancement-type PMOS transistor for operation in the triode region and in the saturation region.

Page 28: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 28Copyright 2004 by Oxford University Press, Inc.

Figure E4.8

Vt=-1V, kp’=60A/V2, W/L=10, hitung

(a) VG agar FET konduksi

(b) VD untuk triode

(c) VD untuk saturasi

(d) untuk =0, |VOV|, VG dan VD untuk ID=75A

(e) ro untuk =-0,02V-1 dan |VOV| dari (d)

(f) ID untuk =-0,02V-1 dan |VOV| dari (d) pada VD=+3V

dan VD=0V, lalu hitung ro dan bandingkan dengan (e)

tSGtSG VVVVv (a) Syarat VVG 415

(b) Syarat tGDtGSDS VVVVvv 1 GD VV

(c) Syarat tGDtGSDS VVVVvv 1 GD VV

Page 29: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 29Copyright 2004 by Oxford University Press, Inc.

Figure E4.8

(d) Asumsi saturasi

LW

k

IVV

L

WkI

p

DOVOVnD

'

2'

212

1 VVOV 5,0

106021

75

tOVSGtSGOV VVVVVV

SGSGGSSG VVVVVV

VVSG 5,115,0

VVSG 5,35,15

tGDtGSDS VVVVVV VVD 5,4)1(5,3

MI

rD

o 667,07502,0

11

(e)

(f) 2' 12

1OVDSpD Vv

L

Wki 751 DSD vi Untuk ini

VVD 3 AiD 78755302,01

VVD 0 AiD 5,82755002,01

MMII

VVr

DD

DSDSo 667,0

5,8278

52

21

21 sama!

Page 30: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 30Copyright 2004 by Oxford University Press, Inc.

Table 4.1

Page 31: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 31Copyright 2004 by Oxford University Press, Inc.

Body Effect pada tegangan threshold

fSBftt VVV 220

ox

sA

C

qN

2

Page 32: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 32Copyright 2004 by Oxford University Press, Inc.

Figure 4.20 Circuit for Example 4.2.

ID diinginkan 400A, VD =0,5V, RD dan RS?

Vt=0,7V, nCox=100A/V2, L=1m, dan W=32m

Langkah:1. Cek konduksi? Cek saturasi atau triode?2. Hitung VOV

3. Hitung VGS

4. Hitung VS

Page 33: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 33Copyright 2004 by Oxford University Press, Inc.

Figure 4.21 Circuit for Example 4.3.

ID diinginkan 80A, R?

Vt=0,6V, nCox=200A/V2, L=0,8m, dan W=4m

22

2

1

2

1OVoxntGSoxnD V

L

WCVv

L

WCi

MOSFET dalam keadaan saturasi (mengapa?)

V

LW

C

IV

oxn

DOV 4,0

8,04

200

8022

VVVV tOVGS 16,04,0 VVV GSD 1

kI

VVR

D

DDD 2580

13

Page 34: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 34Copyright 2004 by Oxford University Press, Inc.

Figure E4.12

Rangkaian pada cabang kanan idem rangkaian sebelumnya,berapa arus pada R=20k? Berapa tegangan drain?FET Q2 dan Q1 identik

Anggap saturasi, VOV pada kedua rangkaian sama,maka arus sama, yaitu 80A

VkRIVV DDDD 4,1208032

Tegangan VDS=VD>VOV maka FET Q2 dalam keadaan saturasi (anggapan benar)

Page 35: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 35Copyright 2004 by Oxford University Press, Inc.

Figure 4.22 Circuit for Example 4.4.

Rancang agar VD = 0,1V (atau RD?)

Vt=1V, kn’W/L=1mA/V2

FET dalam keadaan trioda, karena

2'

2

1DSDStGSnD vvVv

L

Wki

sehingga

mAID 395,01,02

11,0151 2

kmI

VVR

D

DDD 4,12395

1,05

Mengikuti nilai resistor baku yang tersedia untukToleransi 5% dapat digunakan 12k

Page 36: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 36Copyright 2004 by Oxford University Press, Inc.

Figure 4.23 (a) Circuit for Example 4.5. (b) The circuit with some of the analysis details shown.

Page 37: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 37Copyright 2004 by Oxford University Press, Inc.

Figure 4.24 Circuit for Example 4.6.

Page 38: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 38Copyright 2004 by Oxford University Press, Inc.

Figure 4.25 Circuits for Example 4.7.

Page 39: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 39Copyright 2004 by Oxford University Press, Inc.

Figure E4.16

Page 40: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 40Copyright 2004 by Oxford University Press, Inc.

Figure 4.26 (a) Basic structure of the common-source amplifier. (b) Graphical construction to determine the transfer characteristic of the amplifier in (a).

DSDD

DDD v

RR

Vi

1

DDDDDSO iRVvv

Fungsi R?

Page 41: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 41Copyright 2004 by Oxford University Press, Inc.

Figure 4.26 (Continued) (c) Transfer characteristic showing operation as an amplifier biased at point Q.

Page 42: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 42Copyright 2004 by Oxford University Press, Inc.

Figure 4.27 Two load lines and corresponding bias points. Bias point Q1 does not leave sufficient room for positive signal swing at the drain (too close to VDD). Bias point Q2 is too close to the boundary of the triode region and might not allow for sufficient negative signal swing.

Page 43: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 43Copyright 2004 by Oxford University Press, Inc.

22

1tIoxnD Vv

L

WCi

DDDDO iRVv

22

1tIoxnDDDO Vv

L

WCRVv

IQI VvI

Ov dv

dvA

tIQoxnDv VVL

WCRA

MOSFET saturasi

OV

RD

OV

OQDDv V

V

V

VVA

22

OQO VvI

Ov dv

dvA

tIBOB VVV

tIQOV VVV

Page 44: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 44Copyright 2004 by Oxford University Press, Inc.

2

2

1OOtIoxnD vvVv

L

WCi

DDDDO iRVv

OtIoxnDDDO vVvL

WCRVv

MOSFET triode

tIoxnD

DDO

VvL

WCR

Vv

1

tIoxn

DS

VvL

WC

r

1

DDS

DSDDO Rr

rVv

atau dengan

untuk makaDDS Rr D

DSDDO R

rVv

Page 45: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 45Copyright 2004 by Oxford University Press, Inc.

Contoh Numerik

kn’(W/L)=1mA/V2 Vt=1V RD=18kVDD=10V

Letak X

Letak A

Letak B

22

1tIoxnDDDO Vv

L

WCRVv

21182

110 OBOB VV

0109 2 OBOB VV

0)1)(109( OBOB VV

VvI 0 VVv DDO 10

VVv tI 1 VVv DDO 10

1 OBtOBIBI VVVVv

VVOB 1

22

1tIBoxnDDDOB VV

L

WCRVV

VVIB 2

1101

11

tIoxn

DS

VvL

WC

r

Letak C

VRr

rVV

DDS

DSDDOC 061,0

1891

91

10

Page 46: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 46Copyright 2004 by Oxford University Press, Inc.

Contoh Numerik

10V

2V

5,5V

Letak Q

Q dapat dipilih tepat diantara jangkauantegangan output atau 5,5V namun untukmendapat gain yang lebih besar dipilihpada tegangan output 4V

VVOQ 4

mAkR

VVI

D

OQDDD 3

1

18

410

2'

2

1OVnD V

L

WkI

V

LW

k

IV

n

DOV 816,0

1

3/122

'

VVVVV tOVGSQIQ 816,11816,0

VVVVL

WCRA tIQoxnDv /7,141816,1118

4V

Page 47: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 47Copyright 2004 by Oxford University Press, Inc.

Figure 4.28 Example 4.8.

Contoh Numerik

Tegangan input

Page 48: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 48Copyright 2004 by Oxford University Press, Inc.

1,741 0,275 5,05

1,816 0,333 4,00

1,891 0,397 2,85Figure 4.28 (Continued)

GSI vv 2'

2

1tGSnD Vv

L

Wki DDDDO RiVv

][V ][mA ][VDi1810 21

2

1GSv

Page 49: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 49Copyright 2004 by Oxford University Press, Inc.

Contoh dengan SPICE

Rangkaian Amplifier Sederhana dengan MOSFET Example 4.8** Rangkaiannya** FETnya FET drain gate source body nama_model*M1 out in 0 0 NMOS1 L=1u W=1u** Resistor drain RD=18k*R1 vdd out 18k** Power Supply VDD=10V*VDD vdd 0 10** Tegangan Input Sinusoidal DC 1.816V Amplitude AC 77mV Frekuensi 10KHz* Alternatif untuk sinyal seperti dalam teks menggunakan PWL**VS in 0 SIN(1.816 0.075 10k 0 0)VS in 0 PWL(0 1.816 50us 1.741 150us 1.891 250us 1.741 350us 1.891 450us 1.741 500us 1.816) *.MODEL NMOS1 NMOS KP=1e-3 VTO=1 .end.controltran 5us 0.5msplot in outplot out vs in.end

Page 50: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 50Copyright 2004 by Oxford University Press, Inc.

Contoh dengan SPICE

Page 51: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 51Copyright 2004 by Oxford University Press, Inc.

Figure 4.29 The use of fixed bias (constant VGS) can result in a large variability in the value of ID. Devices 1 and 2 represent extremes among units of the same type.

Pemberian Bias Penguat MOSFET

Cara paling “sederhana” dengan memberikantegangan tetap (DC) langsung antara terminalgate dan source VGS

Cara ini kurang tepat mengingat mobilitaspembawa muatan dan tegangan threshold fungsi (kuat) temperatur sehingga dapatmemberikan arus drain yang berbeda pula seperti ditunjukkan pda kurva ini

22

1tGSoxnD Vv

L

WCi

2

2

1DSDStGSoxnD vvVv

L

WCi

Page 52: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 52Copyright 2004 by Oxford University Press, Inc.

Figure 4.30 Biasing using a fixed voltage at the gate, VG, and a resistance in the source lead, RS: (a) basic

arrangement; (b) reduced variability in ID; (c) practical implementation using a single supply; (d) coupling of a signal source to the gate using a capacitor CC1; (e) practical implementation using two supplies.

DSGSG IRVV

Page 53: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 53Copyright 2004 by Oxford University Press, Inc.

Figure 4.31 Circuit for Example 4.9.

Contoh

1

kn’(W/L)=1mA/V2 Vt=1V VDD=15V

Hitung (rancang) nilai resistansi yang diperlukan untuk ID=0,5mA

1

1. Gunakan thumb rule untuk menen-tukan tegangan drain-source

2. Hitung resistor di source dan drain

3. Hitung tegangan overdrive yang diperlukan

DDDS VV3

1

DDS VV3

1 DDDDD VVV

3

1

Apayang terjadi bila Vt naik menjadi 1,5V?

VVS 5153

1 VVD 515

3

1

2

2

kmI

VR

D

SS 10

5,0

5

kmI

VVR

D

DDDD 10

5,0

1015

V

LW

k

IV

n

DOV 1

1

5,022

'

3

Page 54: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 54Copyright 2004 by Oxford University Press, Inc.

Contoh

1

1

2

2

VVVV tOVGS 211

4. Hitung tegangan gate-source

43

5

5. Hitung tegangan gate

VVVV SGSG 752

6. Hitung (pilih) resistor pembagi tegangan gate

AB

BDDG RR

RVV

AB

B

RR

R

157

MRB 7 MRA 8

6

6

Page 55: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 55Copyright 2004 by Oxford University Press, Inc.

Contoh

Tegangan threshold naik menjadi 1,5V

1

1. Tegangan gate tetap

2. Gunakan rangkaian di source untuk menentukan tegangan gate-source

3. Gunakan persamaan arus-tegangan FET untuk menentukan arus drain

VVG 7

DSGSG IRVV

DGS IV 107

2'

2

1tGSnD VV

L

WkI

25,12

1 GSD VI

DGS IV 107

25,11072

1 DD II

0125,155450 2 DD II mAID 455,0

Perubahan arus drain mAIII DDD 045,05,0455,021

atau %9%1005,0

045,0

D

D

I

I

2

3

Page 56: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 56Copyright 2004 by Oxford University Press, Inc.

Figure 4.32 Biasing the MOSFET using a large drain-to-gate feedback resistance, RG.

DDDDDSGS IRVVV

DDGSDD IRVV

Page 57: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 57Copyright 2004 by Oxford University Press, Inc.

Figure 4.33 (a) Biasing the MOSFET using a constant-current source I. (b) Implementation of the constant-current source I using a current mirror.

21

1 2

1tGSoxnD VV

L

WCI

R

VVVII GSSSDD

REFD

1

1

22 /

/

LW

LWII REFD

22

2 2

1tGSoxnD VV

L

WCI

Page 58: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 58Copyright 2004 by Oxford University Press, Inc.

Figure 4.34 Conceptual circuit utilized to study the operation of the MOSFET as a small-signal amplifier.

gsGSGS vVv

2'

2

1tGSnD Vv

L

Wki

D

DDDD R

vVi

saturasi tGD Vvv

2'

2

1tgsGSnD VvV

L

Wki

2''2'

2

1

2

1gsngstGSntGSn v

L

WkvVV

L

WkVV

L

Wk

OVgs

tGSgs

gstGSngsn

Vv

VVv

vVVL

Wkv

L

Wk

2

22

1 '2'

Untuk

atau

atau

gstGSnDD vVVL

WkIi '

Untuk sinyal kecil dDD iIi sehingga gstGSnd vVVL

Wki '

gsmd vgi dapat ditulis

dengan tGSnm VVL

Wkg ' atau OVnm V

L

Wkg '

Page 59: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 59Copyright 2004 by Oxford University Press, Inc.

Figure 4.35 Small-signal operation of the enhancement MOSFET amplifier.

22

1tGSoxnD Vv

L

WCi

tGSnm VVL

Wkg '

GSGS VvGS

Dm v

ig

2'

2

1OVnD V

L

WkI

Page 60: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 60Copyright 2004 by Oxford University Press, Inc.

Figure 4.36 Total instantaneous voltages vGS and vD for the circuit in Fig. 4.34.

dDD iIi

DDDDD iRvv

dDDDDD iIRvv

dDDDDDD iRIRvv

dDDD iRVv

Untuk sinyal kecil dDD vVv

DgsmdDd RvgiRv

Dmgs

dv Rg

v

vA

Penguatan tegangan

Page 61: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 61Copyright 2004 by Oxford University Press, Inc.

Figure 4.37 Small-signal models for the MOSFET: (a) neglecting the dependence of iD on vDS in saturation (the channel-length modulation effect); and (b) including the effect of channel-length modulation, modeled by output resistance ro = |VA| /ID.

tGSnm VVL

Wkg '

GSGS VvGS

Dm v

ig

Do I

r

1

D

Ao I

Vr

2'

2

1tGSnD VV

L

WkI 2'

2

1OVnD V

L

WkI

OVnm VL

Wkg '

1

tetapvDS

Do

GSv

ir

Dmv RgA oDmv rRgA //Penguatan tegangan Penguatan tegangan

Dnm IL

Wkg '2

OV

D

tGS

Dm V

I

VV

Ig

22

Page 62: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 62Copyright 2004 by Oxford University Press, Inc.

Figure 4.38 Example 4.10: (a) amplifier circuit; (b) equivalent-circuit model.

Kapasitor kopling untuk memisahkan tegangan DC

dt

dvi CC

Langkah analisis1. Tentukan titik kerja DC (quotient)2. Hitung parameter model ekivalen

rangkaian sinyal kecil3. Susun rangkaian ekivalen sinyal

kecil4. Lakukan analisis rangkaian

kn’(W/L)=0,25mA/V2 Vt=1,5V VA=50V

1 Menentukan titik kerjaarus drain untuk MOSFET saturasi

tegangan drain

hubungan tegangan drain dan gate

sehingga

dan dapat diperoleh

22' 5,125,02

1

2

1 GStGSnD VVV

L

WkI

DDDDDD IIRVV 1015

DSGS VV

25,11015125,0 DD II

mAID 06,1 VVD 4,4

DG VV

Page 63: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 63Copyright 2004 by Oxford University Press, Inc.

Langkah analisis1. Tentukan titik kerja DC (quotient)2. Hitung parameter model ekivalen

rangkaian sinyal kecil3. Susun rangkaian ekivalen sinyal

kecil4. Lakukan analisis rangkaian

kn’(W/L)=0,25mA/V2 Vt=1,5V VA=50V

2 Menghitung parameter model rangkaian ekivalen

tGSnm VVL

Wkg '

D

Ao I

Vr

VmAgm /725,05.14,425,0

km

ro 4706,1

50

mAID 06,1 VVD 4,4

Page 64: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 64Copyright 2004 by Oxford University Press, Inc.

Langkah analisis1. Tentukan titik kerja DC (quotient)2. Hitung parameter model ekivalen

rangkaian sinyal kecil3. Susun rangkaian ekivalen sinyal

kecil4. Lakukan analisis rangkaian

kn’(W/L)=0,25mA/V2 Vt=1,5V VA=50V

VmAgm /725,0 kro 47

mAID 06,1 VVD 4,4

3 Menyusun rangkaian ekivalen sinyal kecilSumber tegangan DC menjadi hubung singkatKapasitor (tak hingga!) menjadi hubung singkat

Page 65: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 65Copyright 2004 by Oxford University Press, Inc.

kn’(W/L)=0,25mA/V2 Vt=1,5V VA=50V

VmAgm /725,0 kro 47

mAID 06,1 VVD 4,44 Melakukan analisis rangkaian

tegangan output dengan pengaruh RG diabaikan

penguatan tegangan

oLDgsmo rRRvgv ////

gs

oLDgsm

i

ov v

rRRvg

v

vA

////

kkk

mAv

471

101

101

1725,0

VVAv /3,3

G

i

G

i

i

o

G

i

G

oii R

v

R

v

v

v

R

v

R

vvi 3,43,311

MMR

R

vv

i

vR G

G

i

i

i

iin 33,2

33,4

10

33,433,4

Page 66: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 66Copyright 2004 by Oxford University Press, Inc.

Figure 4.39 Development of the T equivalent-circuit model for the MOSFET. For simplicity, ro has been omitted but can be added between D and S in the T model of (d).

Page 67: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 67Copyright 2004 by Oxford University Press, Inc.

Figure 4.40 (a) The T model of the MOSFET augmented with the drain-to-source resistance ro. (b) An alternative representation of the T model.

Model T MOSFET

Page 68: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 68Copyright 2004 by Oxford University Press, Inc.

Figure 4.41 Small-signal equivalent-circuit model of a MOSFET in which the source is not connected to the body.

Page 69: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 69Copyright 2004 by Oxford University Press, Inc.

Table 4.2

Page 70: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 70Copyright 2004 by Oxford University Press, Inc.

Figure 4.42 Basic structure of the circuit used to realize single-stage discrete-circuit MOS amplifier configurations.

Rangkaian dasar (DC) penguatdengan MOSFET

Page 71: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 71Copyright 2004 by Oxford University Press, Inc.

Figure E4.30

Page 72: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 72Copyright 2004 by Oxford University Press, Inc.

Table 4.3

Definisi model “makro” penguat

Penguatan teganganbeban terbuka

LRi

ovo v

vA

i

oi i

iA

Penguatan tegangani

ov v

vA

Penguatan arusbeban hubung singkat

0

LRi

ois i

iA

Penguatan arus

Penguatan tegangankeseluruhan bebanterbuka

LRsig

ovo v

vG

Penguatan tegangankeseluruhan sig

ov v

vG

Page 73: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 73Copyright 2004 by Oxford University Press, Inc.

Table 4.3

Definisi model “makro” penguat

Resistansi inputtanpa beban

LRi

ii i

vR

0

ivx

xo i

vR

Resistansi output“riil”

Resistansi output0

sigvx

xout i

vR

0

LRi

om v

iG

Resistansi inputi

iin i

vR

Transkonduktansihubung singkat

Page 74: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 74Copyright 2004 by Oxford University Press, Inc.

Table 4.3

Definisi model “makro” penguat

sigin

in

sig

i

RR

R

v

v

oL

Lvov RR

RAA

omvo RGA

oL

Lvo

sigin

inv RR

RA

RR

RG

vosigi

ivo A

RR

RG

oL

Lvov RR

RGG

Page 75: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 75Copyright 2004 by Oxford University Press, Inc.

Figure 4.43 (a) Common-source amplifier based on the circuit of Fig. 4.42. (b) Equivalent circuit of the amplifier for small-signal analysis. (c) Small-signal analysis performed directly on the amplifier circuit with the MOSFET model implicitly utilized.

Page 76: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 76Copyright 2004 by Oxford University Press, Inc.

Figure 4.44 (a) Common-source amplifier with a resistance RS in the source lead. (b) Small-signal equivalent circuit with ro neglected.

Page 77: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 77Copyright 2004 by Oxford University Press, Inc.

Figure 4.45 (a) A common-gate amplifier based on the circuit of Fig. 4.42. (b) A small-signal equivalent circuit of the amplifier in (a). (c) The common-gate amplifier fed with a current-signal input.

Page 78: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 78Copyright 2004 by Oxford University Press, Inc.

Figure 4.46 (a) A common-drain or source-follower amplifier. (b) Small-signal equivalent-circuit model. (c) Small-signal analysis performed directly on the circuit. (d) Circuit for determining the output resistance Rout of the source follower.

Page 79: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 79Copyright 2004 by Oxford University Press, Inc.

Table 4.4

Page 80: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 80Copyright 2004 by Oxford University Press, Inc.

Table 4.4 (Continued)

Page 81: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 81Copyright 2004 by Oxford University Press, Inc.

Figure 4.47 (a) High-frequency equivalent circuit model for the MOSFET. (b) The equivalent circuit for the case in which the source is connected to the substrate (body). (c) The equivalent circuit model of (b) with Cdb neglected (to simplify analysis).

Page 82: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 82Copyright 2004 by Oxford University Press, Inc.

Figure 4.48 Determining the short-circuit current gain Io /Ii.

Page 83: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 83Copyright 2004 by Oxford University Press, Inc.

Table 4.5

Page 84: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 84Copyright 2004 by Oxford University Press, Inc.

Figure 4.49 (a) Capacitively coupled common-source amplifier. (b) A sketch of the frequency response of the amplifier in (a) delineating the three frequency bands of interest.

Page 85: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 85Copyright 2004 by Oxford University Press, Inc.

Figure 4.50 Determining the high-frequency response of the CS amplifier: (a) equivalent circuit; (b) the circuit of (a) simplified at the input and the output;

Page 86: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 86Copyright 2004 by Oxford University Press, Inc.

Figure 4.50 (Continued) (c) the equivalent circuit with Cgd replaced at the input side with the equivalent capacitance Ceq; (d) the frequency response plot, which is that of a low-pass single-time-constant circuit.

Page 87: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 87Copyright 2004 by Oxford University Press, Inc.

Figure 4.51 Analysis of the CS amplifier to determine its low-frequency transfer function. For simplicity, ro is neglected.

Page 88: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 88Copyright 2004 by Oxford University Press, Inc.

Figure 4.52 Sketch of the low-frequency magnitude response of a CS amplifier for which the three break frequencies are sufficiently separated for their effects to appear distinct.

Page 89: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 89Copyright 2004 by Oxford University Press, Inc.

Figure 4.53 The CMOS inverter.

Page 90: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 90Copyright 2004 by Oxford University Press, Inc.

Figure 4.54 Operation of the CMOS inverter when vI is high: (a) circuit with vI = VDD (logic-1 level, or VOH); (b) graphical construction to determine the operating point; (c) equivalent circuit.

Page 91: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 91Copyright 2004 by Oxford University Press, Inc.

Figure 4.55 Operation of the CMOS inverter when vI is low: (a) circuit with vI = 0 V (logic-0 level, or VOL); (b) graphical construction to determine the operating point; (c) equivalent circuit.

Page 92: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 92Copyright 2004 by Oxford University Press, Inc.

Figure 4.56 The voltage transfer characteristic of the CMOS inverter.

Page 93: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 93Copyright 2004 by Oxford University Press, Inc.

Figure 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through QN; (d) equivalent circuit during the capacitor discharge.

Page 94: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 94Copyright 2004 by Oxford University Press, Inc.

Figure 4.58 The current in the CMOS inverter versus the input voltage.

Page 95: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 95Copyright 2004 by Oxford University Press, Inc.

Figure 4.59 (a) Circuit symbol for the n-channel depletion-type MOSFET. (b) Simplified circuit symbol applicable for the case the substrate (B) is connected to the source (S).

Page 96: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 96Copyright 2004 by Oxford University Press, Inc.

Figure 4.60 The current-voltage characteristics of a depletion-type n-channel MOSFET for which Vt = –4 V and kn(W/L) = 2 mA/V2: (a) transistor with current and voltage polarities indicated; (b) the iD–vDS characteristics; (c) the iD–vGS characteristic in saturation.

Page 97: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 97Copyright 2004 by Oxford University Press, Inc.

Figure 4.61 The relative levels of terminal voltages of a depletion-type NMOS transistor for operation in the triode and the saturation regions. The case shown is for operation in the enhancement mode (vGS is positive).

Page 98: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 98Copyright 2004 by Oxford University Press, Inc.

Figure 4.62 Sketches of the iD–vGS characteristics for MOSFETs of enhancement and depletion types, of both polarities (operating in saturation). Note that the characteristic curves intersect the vGS axis at Vt. Also note that for generality somewhat different values of |Vt| are shown for n-channel and p-channel devices.

Page 99: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 99Copyright 2004 by Oxford University Press, Inc.

Figure E4.51

Page 100: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 100Copyright 2004 by Oxford University Press, Inc.

Figure E4.52

Page 101: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 101Copyright 2004 by Oxford University Press, Inc.

Figure 4.63 Capture schematic of the CS amplifier in Example 4.14.

Page 102: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 102Copyright 2004 by Oxford University Press, Inc.

Figure 4.64 Frequency response of the CS amplifier in Example 4.14 with CS = 10 F and CS = 0 (i.e., CS removed).

Page 103: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 103Copyright 2004 by Oxford University Press, Inc.

Figure P4.18

Page 104: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 104Copyright 2004 by Oxford University Press, Inc.

Figure P4.33

Page 105: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 105Copyright 2004 by Oxford University Press, Inc.

Figure P4.36

Page 106: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 106Copyright 2004 by Oxford University Press, Inc.

Figure P4.37

Page 107: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 107Copyright 2004 by Oxford University Press, Inc.

Figure P4.38

Page 108: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 108Copyright 2004 by Oxford University Press, Inc.

Figure P4.41

Page 109: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 109Copyright 2004 by Oxford University Press, Inc.

Figure P4.42

Page 110: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 110Copyright 2004 by Oxford University Press, Inc.

Figure P4.43

Page 111: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 111Copyright 2004 by Oxford University Press, Inc.

Figure P4.44

Page 112: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 112Copyright 2004 by Oxford University Press, Inc.

Figure P4.45

Page 113: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 113Copyright 2004 by Oxford University Press, Inc.

Figure P4.46

Page 114: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 114Copyright 2004 by Oxford University Press, Inc.

Figure P4.47

Page 115: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 115Copyright 2004 by Oxford University Press, Inc.

Figure P4.48

Page 116: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 116Copyright 2004 by Oxford University Press, Inc.

Figure P4.54

Page 117: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 117Copyright 2004 by Oxford University Press, Inc.

Figure P4.61

Page 118: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 118Copyright 2004 by Oxford University Press, Inc.

Figure P4.66

Page 119: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 119Copyright 2004 by Oxford University Press, Inc.

Figure P4.74

Page 120: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 120Copyright 2004 by Oxford University Press, Inc.

Figure P4.75

Page 121: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 121Copyright 2004 by Oxford University Press, Inc.

Figure P4.77

Page 122: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 122Copyright 2004 by Oxford University Press, Inc.

Figure P4.86

Page 123: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 123Copyright 2004 by Oxford University Press, Inc.

Figure P4.87

Page 124: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 124Copyright 2004 by Oxford University Press, Inc.

Figure P4.88

Page 125: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 125Copyright 2004 by Oxford University Press, Inc.

Figure P4.97

Page 126: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 126Copyright 2004 by Oxford University Press, Inc.

Figure P4.99

Page 127: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 127Copyright 2004 by Oxford University Press, Inc.

Figure P4.101

Page 128: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 128Copyright 2004 by Oxford University Press, Inc.

Figure P4.104

Page 129: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 129Copyright 2004 by Oxford University Press, Inc.

Figure P4.117

Page 130: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 130Copyright 2004 by Oxford University Press, Inc.

Figure P4.120

Page 131: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 131Copyright 2004 by Oxford University Press, Inc.

Figure P4.121

Page 132: MOS Field-Effect Transistors (MOSFETs)

Microelectronic Circuits - Fifth Edition Sedra/Smith 132Copyright 2004 by Oxford University Press, Inc.

Figure P4.123