Monte Carlo simulations of diffusive phase transformations ...

15
1 BEMOD12– Dresden, March 26 - 29, 2012 Beyond Molecular Dynamics: Long Time Atomic-Scale Simulations – Dresden, March 26 - 29, 2012 Monte Carlo simulations of diffusive phase transformations: time-scale problems F. Soisson Service de recherches de Métallurgie Physique CEA Saclay C.-C. Fu, T. Jourdan, E. Martinez (LANL), M. Nastar and O. Senninger

Transcript of Monte Carlo simulations of diffusive phase transformations ...

Page 1: Monte Carlo simulations of diffusive phase transformations ...

1BEMOD12– Dresden, March 26 - 29, 2012

Beyond Molecular Dynamics: Long Time Atomic-Scale Simulations – Dresden, March 26 - 29, 2012

Monte Carlo simulations of diffusive phase transformations: time-scale problems

F. SoissonService de recherches de Métallurgie Physique

CEA Saclay

C.-C. Fu, T. Jourdan, E. Martinez (LANL), M. Nastar and O. Senninger

Page 2: Monte Carlo simulations of diffusive phase transformations ...

2BEMOD12– Dresden, March 26 - 29, 2012

§ Atomistic Kinetic Monte Carlo simulations (AKMC) : from an atomistic description of diffusion mechanisms to the kinetics of phases transformations in metallic alloys

§ The precipitation kinetic pathways depends on point defect diffusion propertieskey points : the dependence of the migration barriers and the vacancy

concentrations with the local configuration

Ab initio calculations (thermodynamics and diffusion)

Diffusion model on a rigid lattice

Atomistic Kinetic Monte Carlo simulations (AKMC)

§ Applications to the decomposition of Fe-Cr concentrated solid solutionsComparison with experiments (3D atom probe and SANS)

§ Contributions of ab initio calculations (and their current limitations)

Outline

Page 3: Monte Carlo simulations of diffusive phase transformations ...

3BEMOD12– Dresden, March 26 - 29, 2012 3BEMOD12– Dresden, March 26 - 29, 2012

• A-B alloy – rigid lattice with pair interactions : εAA, εAB, εBB + εAV, εBV

Possible improvements: - many-body interactions (triangle, tetrahedron, etc.) - composition dependent interactions (-> FeCr alloys) - temperature dependent interactions (-> ΔSmig, ΔSfor)

Alternative approach : interatomic potentials

• Diffusion by thermally activated point defects jumps

- jump frequency : depend on the local environments

- migration barriers: broken-bond models

• AKMC: residence time algorithmSimulations with 106-107 atoms, PBC and 1 vacancy -> time scale :

A

B

VΓA-V

ΓC

C

{

mig

saddle-point inte

( ) ( )

, ,

ractions broken-bonds

ε εΔ ( ) ε( ) n nAj kV

SPAi

iAV sy

js s

n ks

nyE E SP E ini= − = − −� �¥

1 44 2 4 43

A

ΔΓ ν exp

migAV

AVb

E

k T

� �= −� �

� �

Rigid lattice diffusion model

1

ГMCi

i

t =¥

Page 4: Monte Carlo simulations of diffusive phase transformations ...

4BEMOD12– Dresden, March 26 - 29, 2012

Physical time scale and point defect concentrationsThe kinetic pathways depends on the migration barriers but also on the point defect concentrations : simulations with a constant number of point defects (e.g. NV = 1) require a time rescaling

The time correction factor is not constant with /

usually evolves during the phase transformations

MCV MC

MC V VeqV

eqV

Ct t C N N

C

C

= =

• For any local environment (α) :

also provides an estimation of during the phase transformation

(α) (α) with (α) exp

(α)

MC foreqV V

MC VeqV

C Et t C

C kT

� �= = −� �

� �

(α) =

(α)

eqeq MC VV V MC

V

CC C

C

(pure A)ε ε2

forV AA AV

zE z= − +

• A convenient choice for phase separation : pure A or pure B

• Only valid when vacancy concentration remains at equilibrium.Alternative approach : AKMC with formation and annihilation mechanisms (sources/sinks)

Page 5: Monte Carlo simulations of diffusive phase transformations ...

5BEMOD12– Dresden, March 26 - 29, 2012

One simple example

Phase separation in an A95-B5 alloy :

Strong variation of the time rescaling factorGibbs-Thomson effect : Application: vacancy concentration in non-ideal concentrated solid solutions

(Mean-Field models, M. Nastar)

(A) 1.4 eV ( ) 1.0 eVfor forV VE E B= > =

AKMC simulationwith 1 vacancyT = 573 K (0.6 Tc)

with ref. A slightly > with ref. Beq eqV VC C

%

(A)

(A = =

(B)

(B) )

eqMC VV

eeq

MC VV M

VVCC

qV M

CCC

CC

CC

eqVC

Page 6: Monte Carlo simulations of diffusive phase transformations ...

6BEMOD12– Dresden, March 26 - 29, 2012

Classical theories of nucleation, growth and coarsening: emission/absorption of individual solute atoms

•AKMC simulation :

Small Cu clusters are mobile than monomers

-> coagulation mechanisms

•Measurements of the cluster diffusion coefficients

•CD and EKMC simulations (T. Jourdan)

- the diffusion of clusters strongly accelerates the

precipitation kinetics

- better agreement with experiments

Copper precipitation in α-iron : clusters mobility

(Cu) 0.9 eV ( ) 2.1 eVfor forV VE E Fe= > =

Page 7: Monte Carlo simulations of diffusive phase transformations ...

7BEMOD12– Dresden, March 26 - 29, 2012

α-α’ decomposition in Fe-Cr alloys

Fe-Cr alloys : a model system for ferritic-martensitic steelsA special thermodynamic behavior :

SANS and electrical resistivity experiments:below 10%Cr : ordering tendencyabove 10%Cr : unmixing tendency

(Mirebeau et al, 1984)

Ab initio calculations: connected to magnetic properties Strong vibrational entropy (exp. + ab initio)

Phase diagram

“old Calphad”: no Cr solubility at low T

new phase diagramtakes into account DFT calculationsand experiments at low T(Bonny et al, 2010)

V1,2 (meV)

SRO

Cr concentration

V1,2 (meV)

SRO

Cr concentration

Page 8: Monte Carlo simulations of diffusive phase transformations ...

8BEMOD12– Dresden, March 26 - 29, 2012 8BEMOD12– Dresden, March 26 - 29, 2012

• Constant pair interactions: symmetrical mixing energies and phase diagram • Composition dependent pair interactions fitted on DFT calculations (1st and 2nd nearest-neighbor) -> asymmetrical phase diagram• Temperature dependence: εFeCr(x,T) = εFeCr(x,0) (1-T/θ) (magnetic effects, vibrational entropy)

• Alternative approach : Classical and Magnetic Cluster Expansion (Lavrentiev et al)

( )Δ (1 )Ω with Ω 22

n n nnmix AA BB AB

n

zE x x= − = ε + ε − ε¥

Thermodynamics: pair interaction model (M. Levesque et al. 2010)

T (K)

FeCrε ( )x

FeCrε ( , )x T

spinodal

Δ (1 ) (1 )n nmix

n

E x x L x= − −¥ Phase Diagram

Page 9: Monte Carlo simulations of diffusive phase transformations ...

9BEMOD12– Dresden, March 26 - 29, 2012

Diffusion properties: migration barriers• Vacancy migration barriers : vacancies-atom and saddle-point (SP) pair interactions

fitted on DFT calculations of vacancy formation energies and migration barriers (DFT-SIESTA)

attempt frequencies νFe and νCr fitted on ab initio, or the experimental pre-exponential factors

• Self –diffusion in pure metals

• Diffusion in dilute alloys : (10-frequency model)

Migration barriers are computed at 0K, in magnetic configurationsextrapolation above the transitions temperature ?

Fe Cr

2.18 1.91 (Spin-wave)

0.69 1.25 (AFM configuration)

Q 2.87exp: 2.91

3.16exp: 3.2-3.6 (at low T)

forVEmigVE

2* 0 0( )ΓA

A VD a C A f=

2 4* 2

3

( )AB V 2

ΓD a C A fΓ

Γ

�=

Page 10: Monte Carlo simulations of diffusive phase transformations ...

10BEMOD12– Dresden, March 26 - 29, 2012

Diffusion coefficients

Pre-exponential factor :

Good agreement with the experimental D0 (in iron) in iron in chromium

13 1Dν 10

( ) 4.1 (DFT, Lucas & Schaüblin, 2009)

( ) 2.1 (Athènes and Marinica, 2010)

forV B

migV B

s

S Fe k

S Fe k

−===

Page 11: Monte Carlo simulations of diffusive phase transformations ...

11BEMOD12– Dresden, March 26 - 29, 2012

AKMC: α-α’ decomposition during thermal ageing

Fe-20%Cr T = 500°C

AKMC (E. Martinez, O. Senninger, CEA) 3D atom probe (Novy et al, GPM Rouen, 2009)

Page 12: Monte Carlo simulations of diffusive phase transformations ...

12BEMOD12– Dresden, March 26 - 29, 2012

Small Angle Neutrons Scattering experiments : Bley 1994, Furusaka et al 1986

Fe – 20, 35 and 50% Cr, 500°C: good agreement with SANS experimentsFe – 40%Cr, 540°C : AKMC much slower than SANS experimentsThe Curie temperature decreases with the Cr content: effect of the ferro-paramagnetic transition?

AKMC vs SANS experiments (E. Martinez, O. Senninger, 2011)

Page 13: Monte Carlo simulations of diffusive phase transformations ...

13BEMOD12– Dresden, March 26 - 29, 2012

Effect of the magnetic transition on the kineticsO. Senninger, E. Martinez et al. 2012

Evolution of the Curie temperature with the composition

Decrease of the migration barriers at TC (fitted on the experimental diffusion coefficients)

Page 14: Monte Carlo simulations of diffusive phase transformations ...

14BEMOD12– Dresden, March 26 - 29, 2012

Radiation induced segregation and precipitation

Point defect sink

Solute concentration profile

0.01 dpa 0.33 dpa 2.58 dpa

vA

v

A

~ 50 nm

PDsink

6 1

Undersaturatedsolidsolution withan unmixingtendency (ε ε 2ε 0)

5% 8%

/ 0.06 and / 1

10 dpa.s 800K

AA BB AB

eqB B

v v i iB A B A

-

C C

D D D D

G T− −

+ <= − =

� �= =

B

B

Page 15: Monte Carlo simulations of diffusive phase transformations ...

15BEMOD12– Dresden, March 26 - 29, 2012

Conclusions

AKMC simulations: a detailed description of thermodynamic and diffusion properties- dependence of point defect jump frequencies and concentrations with the local

atomic environment- correlation effects (↔ theory of diffusion in alloys)

But time consuming: → cluster dynamics, OKMC, EKMC

Ab initio calculations : → reliable parameters at 0Ktemperature effects : vibrational entropy of mixing, vacancy formation and

migrations entropies - in pure metals

– - in concentrated alloys ?

Fe-Cr alloys: importance of magnetic transitions Perspectives : radiation induced segregation, spinodal decomposition in Fe-Cr alloys