Monte Carlo Simulation of Semiconductors

22
Monte Carlo Simulation of Semiconductors -Chris Darmody Neil Goldsman 2018

Transcript of Monte Carlo Simulation of Semiconductors

Page 1: Monte Carlo Simulation of Semiconductors

Monte Carlo Simulation of Semiconductors

-Chris Darmody Neil Goldsman

2018

Page 2: Monte Carlo Simulation of Semiconductors

Background

β€’ What is the Monte Carlo method?

– Use repeated random sampling to build up distributions and averages

β€’ Want to determine electron energy and velocity distributions under applied electric fields in crystal

π‘˜, 𝐸 π‘˜β€², 𝐸 + Δ§Ο‰

π‘ž = π‘˜β€² βˆ’ π‘˜, Δ§Ο‰

π‘˜, 𝐸

π‘˜β€², 𝐸 βˆ’ Δ§Ο‰

π‘ž = π‘˜ βˆ’ π‘˜β€², Δ§Ο‰

Initial Electron Momentum: π‘˜

Final Electron Momentum: π‘˜β€² Phonon Momentum: π‘ž

𝐹

Phys. Rev. Let., 118(10) (2017)

Chris Darmody Neil Goldsman

Page 3: Monte Carlo Simulation of Semiconductors

Jacoboni and Reggiani, Rev. Mod. Phys. 55.3

Slope = ΞΌ

π‘£π‘ π‘Žπ‘‘

πΈπΆπ‘Ÿπ‘–π‘‘

Silicon Transport Properties

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html

Chris Darmody Neil Goldsman

Page 4: Monte Carlo Simulation of Semiconductors

Simulation Overview

Random flight time: Ο„

Drift in field for Ο„

Scatter

t < tmax

Start

Stop

YES

NO

Position Changing in Real Space:

Energy Changing in Momentum

Space:

𝐹

Ο„

E

𝐸 1 + 𝛼𝐸 =Δ§2π‘˜2

2π‘šβˆ—

π‘˜

F

Electron Drift Motion

Electron Scattering

Ο„

Chris Darmody Neil Goldsman

Page 5: Monte Carlo Simulation of Semiconductors

Reciprocal Space, Band Structure, and Constant Energy Ellipses

Chris Darmody Neil Goldsman

Page 6: Monte Carlo Simulation of Semiconductors

Schrodinger Eq. in Periodic Potential

βˆ’Δ§2

2π‘š

𝑑2πœ“ π‘₯

𝑑π‘₯2 + 𝑉 π‘₯ πœ“ π‘₯ = πΈπœ“ π‘₯

β€’ Eigenvalue problem gives allowed eigenvalues (E) for each eigenfunction (πœ“π‘˜)

β€’ Only certain E-k pairs allowed π‘˜ = 0 πœ‹

π‘Ž βˆ’

πœ‹

π‘Ž

βˆ†π‘˜ =2πœ‹

𝐿

𝐸

Allowed k-states (πœ“π‘˜)

Allowed energies for each state

𝑉 π‘₯ = 𝑉 π‘₯ + π‘›π‘Ž , 𝑛 = 1, 2, 3, 4…

Periodic Potential in Crystal

Bloch Solutions:

πœ“π‘˜ π‘₯ = 𝑒 π‘₯ π‘’π‘–π‘˜π‘₯,

𝑒 π‘₯ = 𝑒 π‘₯ + π‘›π‘Ž ,

π‘˜ =2πœ‹π‘›

𝐿=

2πœ‹π‘›

π‘π‘Ž

Forbidden Gap Eg

Chris Darmody Neil Goldsman

Page 7: Monte Carlo Simulation of Semiconductors

Reciprocal Space

Real (π‘Ÿ ) Space Recip. (π‘˜) Space π‘˜π‘§

π‘˜π‘₯ π‘˜π‘¦

Ξ›

Ξ£

Ξ”

Reciprocal Lattice is the Fourier Transformation of the Real-Space Lattice!

FCC Brillouin Zone

Wessner, IUE Dissertation 2006

Bartolo, Phys. Rev. A 90.3 (2014)

Chris Darmody Neil Goldsman

Page 8: Monte Carlo Simulation of Semiconductors

Plotting Band Structure: E vs k Filled

Valen

ce Ban

ds

Emp

ty CB

s E

G

Irreducible Wedge High Symmetry Points

Constant Energy Ellipsoids Osintsev, IUE Dissertation 1986

Real Silicon Band Structure

(Path through k-space along high symmetry directions) Chris Darmody Neil Goldsman

Page 9: Monte Carlo Simulation of Semiconductors

Simplified Band Model

𝐸 1 + 𝛼𝐸 =Δ§2π‘˜2

2π‘šβˆ—β‰‘ 𝛾(π‘˜)

π‘˜

E

𝐸 =1 + 4𝛼𝛾(π‘˜) βˆ’ 1

2𝛼

ml mt mt

π‘šβˆ— =1

13

1π‘šπ‘™

+2π‘šπ‘‘

= π‘šπ‘

Electrons in a crystal move like free particles except with an effective mass

π‘šπ‘‘ = (π‘šπ‘™π‘šπ‘‘2)1 3

http://math.ucr.edu/home/baez/information/index.html

non-parabolicity factor

Chris Darmody Neil Goldsman

Page 10: Monte Carlo Simulation of Semiconductors

Breakdown of Algorithm Steps

Chris Darmody Neil Goldsman

Page 11: Monte Carlo Simulation of Semiconductors

Monte Carlo Algorithm

Random flight time: Ο„

Drift in field for Ο„

Scatter

t < tmax

Start

Stop

YES

NO

Chris Darmody Neil Goldsman

Page 12: Monte Carlo Simulation of Semiconductors

Electron Drift Motion in Electric Field 𝐹

S1 S2

Scattering Mechanisms (Scattering Rates): S1, S2, … S3 S4 S5 β‹― Virtual

Constant Total Scattering Rate: Ξ“ ~1014 βˆ’ 1015 1/s

𝑃 𝜏 = Ξ“π‘’βˆ’Ξ“πœdΟ„ Probability of drifting for time 𝜏 then scattering:

𝜏 = βˆ’ln(π‘Ÿ1)

Ξ“ Choose random flight time:

r1 uniformly random number from 0-1

βˆ†π‘˜ = βˆ’π‘žπΉ

Δ§βˆ†π‘‘ Change k while drifting for time βˆ†π‘‘ < 𝜏:

𝑣 =1

Δ§π›»π‘˜πΈ =

Δ§π‘˜

π‘šβˆ—

1

(1 + 2𝛼𝐸) Instantaneous velocity:

Chris Darmody Neil Goldsman

Page 13: Monte Carlo Simulation of Semiconductors

Monte Carlo Algorithm

Random flight time: Ο„

Drift in field for Ο„

Scatter

t < tmax

Start

Stop

YES

NO

Chris Darmody Neil Goldsman

Page 14: Monte Carlo Simulation of Semiconductors

Scattering

S1 S2 S3 S4 S5 β‹― Virtual

Constant Total Scattering Rate: Ξ“

Ξ›1(𝐸) Ξ›2(𝐸)

Ξ›3(𝐸) Ξ›4(𝐸)

Ξ›5(𝐸) Λ…(𝐸)

Λ𝑛

Ξ“< π‘Ÿ2 ≀

Λ𝑛+1

Ξ“ Randomly choose scattering mechanism (n+1):

r2, r3, r4 uniformly random numbers from 0-1

πœ‘β€² = 2πœ‹π‘Ÿ3, cos πœƒβ€² = 1 βˆ’ 2π‘Ÿ4 Randomly choose k’ orientation:

π‘˜π‘₯β€² = π‘˜β€² sin(πœƒβ€²) cos(πœ‘β€²)

π‘˜π‘¦β€² = π‘˜β€² sin(πœƒβ€²) sin(πœ‘β€²)

π‘˜π‘§β€² = π‘˜β€² cos(πœƒβ€²)

π‘˜π‘₯ π‘˜π‘¦

π‘˜π‘§

π‘˜ πœƒβ€²

Ο•β€²

π‘˜β€²

After scattering, change energy from E to E’ depending on

mechanism, then calculate π‘˜β€² from E’

Chris Darmody Neil Goldsman

Page 15: Monte Carlo Simulation of Semiconductors

Scattering Mechanisms β€’ Acoustic Scattering:

– π‘†π‘Žπ‘ 𝐸 =2π‘šπ‘‘

3 2 π‘˜π΅π‘‡π·π‘Žπ‘

2

πœ‹Δ§4𝑣𝑠2𝜌

𝐸 + 𝛼𝐸2 1 2 (1 + 2𝛼𝐸)

– 𝐸′ β‰ˆ 𝐸

β€’ Optical Scattering (absorb upper, emit lower):

– π‘†π‘œπ‘ 𝐸 =𝐷𝑑𝐾 π‘œπ‘

2 π‘šπ‘‘3 2

𝑍

2πœ‹πœŒΔ§3πœ”π‘œπ‘

π‘π‘œπ‘

π‘π‘œπ‘ + 1𝐸′ + 𝛼𝐸′2

1 2 (1 + 2𝛼𝐸′)

– 𝐸′ = 𝐸 Β± Δ§πœ”π‘œπ‘

– Δ§πœ”π‘œπ‘ = π‘˜π΅π‘‡π‘œπ‘ (get temperatures from parameter sheet)

– π‘π‘œπ‘ =1

expΔ§πœ”π‘œπ‘

π‘˜π΅π‘‡βˆ’1

(# of phonons in mode)

β€’ Virtual Scattering:

– 𝐸′ = 𝐸

– π‘˜β€² = π‘˜ – Do nothing: Effectively combines two drift events without scattering Chris Darmody

Neil Goldsman

Page 16: Monte Carlo Simulation of Semiconductors

Intervalley Scattering

𝑓1βˆ’3

𝑔1βˆ’3 π‘˜π‘₯

π‘˜π‘¦

π‘˜π‘§

Equivalent Final Valleys in Si 𝒁𝒇 = πŸ’

π’π’ˆ = 𝟏

Introduce degeneracy factor in optical scattering rate formulas

β€’ 3 different β€˜g’ mechanisms with 3 different πœ”π‘œπ‘

β€’ 3 different β€˜f’ mechanisms with 3 additional πœ”π‘œπ‘

β€’ All 6 mechanisms can absorb or emit a phonon

13 Total Scattering Equations: 12 Intervalley + 1 Acoustic

π‘†π‘œπ‘ 𝐸 =𝐷𝑑𝐾 π‘œπ‘

2 π‘šπ‘‘3 2 𝒁

2πœ‹πœŒΔ§3πœ”π‘œπ‘

β‹―

g mechanisms scatter to ellipses across the zone f mechanisms scatter to neighboring ellipses

Chris Darmody Neil Goldsman

31 ways to scatter from a given valley. 2 βˆ— 3 βˆ— 4 + 3 βˆ— 1 + 1 = 31

Absorb/Emit Acoustic f1, f2, f3 g1, g2, g3

*Intervalley scattering mechanisms treated using optical scattering form

Page 17: Monte Carlo Simulation of Semiconductors

Detailed Monte Carlo Algorithm Start

Calc. Scattering Rates: S(E)

Initialize: 𝐸 =3

2π‘˜π΅π‘‡, π‘˜

Random flight time: r1, Ο„

Randomly Choose Scatter Mechanism: r2, get E’

𝜏 > 0

Drift Flight 𝜏 = 𝜏 βˆ’ βˆ†π‘‘

π‘˜ = π‘˜ βˆ’π‘žπΉ

Δ§βˆ†π‘‘

Sample Data E, 𝑣 ||𝐹

Randomly Choose Scatter Final State: r3, r4, get π‘˜β€²

Update State: π‘˜ = π‘˜β€², E=E’

Max Time? Sample Data

E, 𝑣 ||𝐹

Output Histograms Velocity & Energy Distributions

Stop

Y

N

N

Y

Perform this algorithm for each Field

Chris Darmody Neil Goldsman

Page 18: Monte Carlo Simulation of Semiconductors

Sampling Data Between Scattering Events

𝜏

βˆ†π‘‘

Drifting Between Scattering Events β€’ Choose a global sub-flight time step βˆ†π‘‘ β€’ Round 𝜏 to an integer number of sub-flights β€’ Sample E and 𝑣 ||𝐹 at each sub-flight time step

Histograms:

Run simulation for enough real scattering events to obtain smooth histograms

Chris Darmody Neil Goldsman

Page 19: Monte Carlo Simulation of Semiconductors

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html

Extracting Field-Dependent Averages

Average velocity for one input field F

Take time-average of E and 𝑣 ||𝐹 for each field to generate final Drift Velocity and Average Energy vs Field plots

Jacoboni and Reggiani, Rev. Mod. Phys. 55.3

Chris Darmody Neil Goldsman

Page 20: Monte Carlo Simulation of Semiconductors

Parameter Name Conversion

Remember to convert units!

Powerpoint Parameter Sheet

π‘šπ‘™ , π‘šπ‘‘ π‘šπ‘™βˆ†, π‘šπ‘‘βˆ†

π·π‘Žπ‘ E1βˆ†

π‘‡π‘œπ‘ πœƒ 𝑓,𝑔 1βˆ’3

𝛼 π›Όβˆ†

𝑣𝑠 𝑒𝑙

Chris Darmody Neil Goldsman

Page 21: Monte Carlo Simulation of Semiconductors

Mean Velocity Result Comparison to Lit.

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html Chris Darmody Neil Goldsman

Page 22: Monte Carlo Simulation of Semiconductors

Mean Energy Result Comparison to Lit.

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html Chris Darmody Neil Goldsman