Montana Department of Agriculture Groundwater Protection Program.

16
Permanent Monitoring Well Network Groundwater Nitrate 2009-2012 Montana Department of Agriculture Groundwater Protection Program

Transcript of Montana Department of Agriculture Groundwater Protection Program.

Page 1: Montana Department of Agriculture Groundwater Protection Program.

Permanent Monitoring Well Network Groundwater Nitrate 2009-2012

Montana Department of AgricultureGroundwater Protection Program

Page 2: Montana Department of Agriculture Groundwater Protection Program.

Montana Agricultural Chemical Ground Water Protection Act (MCA Title 80, Chapter 15, Sections 80-15-101 through 80-15-414)

Policy of Montana: (1) protect ground water and the environment from

impairment or degradation due to the use of agricultural chemicals

(2) allow for the proper and correct use of agricultural chemicals

(3) provide for the management of agricultural chemicals to prevent, minimize, and mitigate their presence in ground water

(4) provide for education and training of agricultural chemical applicators and the general public on ground water protection, agricultural chemical use, and the use of alternative agricultural chemicals

Page 3: Montana Department of Agriculture Groundwater Protection Program.

Permanent Monitoring Well (PMW) Network • 41 wells sampled regularly 2009-2012• Expected background nitrate 2 ppm

• Most wells are located in agricultural land use• Irrigated and non-irrigated• Various crops

Page 4: Montana Department of Agriculture Groundwater Protection Program.

Groundwater sampling methods• Sample Schedule:

• Samples collected twice a year when possible in spring and summer

• SOP:• Well casing volumes purged three times • Field pH, specific conductance, dissolved oxygen, and temperature

• Handling:• Samples stored in labeled amber glass bottles at 4°C for ≤10 days

• Analysis:• MDA Analytical Laboratory Bureau ion chromatography or electrode• Nitrate measured as Nitrate-N

Page 5: Montana Department of Agriculture Groundwater Protection Program.

Data• 21 wells sampled every year 2009-2012• Dataset assessed for outliers based on

standardized residual values• PMWs with median GW nitrate >2ppm assessed

for identifiable trends • Concentrations assessed in context of:

• Accepted background nitrate level of 2 ppm (Mueller and Helsel, 1996)

• Montana numerical standard for drinking water of 10 ppm NO3

--N (MT DEQ, 2012)

Page 6: Montana Department of Agriculture Groundwater Protection Program.

2009-2012 Findings• 243 total PMW GW samples 2009-2012• Statewide median 2.9 ppm nitrate in PMW GW• Maximum 150 ppm nitrate in PMW GW• Most GW nitrate concentrations were in

background level range of ≤2 ppm

Page 7: Montana Department of Agriculture Groundwater Protection Program.

2009-2012 Findings: Overview and distribution

Page 8: Montana Department of Agriculture Groundwater Protection Program.

2009-2012 Findings: Overview and distribution

-N

Page 9: Montana Department of Agriculture Groundwater Protection Program.

2009-2012 Findings: Overview and distribution

-N-N

Page 10: Montana Department of Agriculture Groundwater Protection Program.

2009-2012 Findings: Overview and distribution

-N-N-N

Page 11: Montana Department of Agriculture Groundwater Protection Program.

2009-2012 Findings: Overview and distribution

-N-N-N

-N

Page 12: Montana Department of Agriculture Groundwater Protection Program.

2009-2012 Findings: Identifiable trendsRegression analysis with trend lines illustrating NO3

--N concentration changes in

PMWs MAD-1, SHE-1, T-1, and ROS-1 over time (2009-2012). An alpha level of

0.05 was used to determine a significant response in NO3--N with time.

1/1/20121/1/20111/1/20101/1/2009

10

9

8

7

6

5

4

3

Date

Nitra

te-N

(ppm

)

S 0.492317R-Sq 96.7%R-Sq(adj) 95.8%

MAD-1 Nitrate-N vs TimeMAD-1 Nitrate-N = - 208.9 + 0.005318Time

1/1/20131/1/20121/1/20111/1/20101/1/2009

9

8

7

6

5

4

3

2

1

0

Date

Nitra

te-N

(ppm

)

S 0.533488R-Sq 97.6%R-Sq(adj) 97.1%

SHE-1 Nitrate-N vs TimeSHE-1 Nitrate-N = - 254.7 + 0.006373Time

1/1/20131/1/20121/1/20111/1/20101/1/2009

36

34

32

30

28

26

24

22

20

Date

Nitra

te-N

(ppm

)

S 3.33883R-Sq 58.7%R-Sq(adj) 50.4%

T-1 Nitrate-N vs TimeT-1 Nitrate-N (ppm) = - 288.8 + 0.007760Time

1/1/20131/1/20121/1/20111/1/20101/1/2009

26

25

24

23

22

21

20

Date

Nitra

te-N

(ppm

)

S 1.14114R-Sq 77.0%R-Sq(adj) 73.2%

ROS-1 Nitrate-N vs TimeROS-1 Nitrate-N = 194.5 - 0.004218Time

Page 13: Montana Department of Agriculture Groundwater Protection Program.

2009-2012 Findings: Identifiable trends and land use

Upward trend

Upward trend

Upward trend

Downward trendDryland small grains with nitrogen management plan

Irrigated small grains and potatoes

Irrigated small grains and potatoes

Dryland small grains and pulse

Page 14: Montana Department of Agriculture Groundwater Protection Program.

Factors affecting PMW GW nitrate concentrations

• Three primary factors over longer time intervals:• (1) Amount of source nitrogen available• (2) Water infiltration and percolation through surface

and subsurface materials • (3) Potential for NO3

- reduction and/or denitrification

• Land use: summer fallow practices with associated mineralization of organic matter and excessive irrigation on well-drained soils

Page 15: Montana Department of Agriculture Groundwater Protection Program.

Conclusion• Most of the MDA PMW network has

consistent accepted background levels of nitrate (≤2 ppm)

• Statewide MDA PMW median nitrate (2.9 ppm) indicates influence of human activities

• Elevated levels of PMW nitrate may be linked to land use practices in small grains

Page 16: Montana Department of Agriculture Groundwater Protection Program.

References• Bauder, J.W., Sinclair, K.N., and Lund, R.E. (1993). Physiographic and land use characteristics associated with nitrate-nitrogen in Montana

groundwater. Journal of Environmental Quality, 22, 255-262.

• Canter, Larry W. (1997). Nitrates in Groundwater. Boca Raton, FL: CRC Press, Inc.  • Census & Economic Information Center. Census 2010: Montana Population Density by County. MT Department of Commerce, April, 2011. Web.

03 Jan. 2014 <http://ceic.mt.gov/Documents/Maps/Population/PopDensity10.pdf>. • Lindsey, B.D., and Rupert, M.G. (2012). Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in

chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988–2010 (U.S. Geological Survey Scientific Investigations Report 2012–5049). United States Geological Survey.

• McLay CD, Dragten R, Sparling G, Selvarajah N. (2001). Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollution, 115, 191-204.

 • Montana Department of Environmental Quality (MT DEQ), Planning Prevention and Assistance Division, Water Quality Planning Bureau, Water

Quality Standards Section. (2012.) DEQ‐7 Montana Numeric Water Quality Standards. Montana Dept. of Environmental Quality. • Mueller, D.K., and Helsel, D.R. (1996). Nutrients in the Nation’s waters Too much of a good thing? (U.S. Geological Survey Circular 113). United

States Geological Survey. • Nimick, D.A., and Thamke, J.N. (1998). Extent, magnitude, and sources of nitrate in the Flaxville and underlying aquifers, Fort Peck Indian

Reservation, northeastern Montana (U.S. Geological Survey Water-Resources Investigations Report 98-4079), United States Geological Survey.  • Postma, D., Boesen, C., Kristiansen, H., and Larsen, F. (1991). Nitrate reduction in an unconfined aquifer: water chemistry, reduction

processes, and geochemical modeling. Water Resources Research, 27, 2027-2045.  • Puckett, L.J. and Cowdery, T.K> (2002). Transport and fate of nitrate in a glacial outwash aquifer in relation to ground-water age, land use

practices and redox processes. Journal of Environmental Quality, 31 (3), 782-796.  • Schmidt, C. (2009). Permanent monitoring well network nitrate-N summary report 2003-2008. Montana Department of Agriculture.

• Schmidt, C. and Mulder, R. (2010). Groundwater and Surface Water Monitoring for Pesticides and Nitrate in the Judith River Basin, Central Montana. Montana Department of Agriculture.

 • Spalding, R. F. and Exner, M. E. (1993). Occurrence of Nitrate in Groundwater—A Review. Journal of Environmental Quality, 22, 392–402. • Spalding, R.F., and Parrott, J.D. (1994). Shallow ground water denitrification. The Science of the Total Environment, 141, 17-25.