Molecular Spintronics using S-Electron...

63
2008.12.18 TU-Dresden Molecular Spintronics using S-Electron Molecules Masashi Shiraishi Masashi Shiraishi 1. Osaka University, Japan. 2. JST-PRESTO, Japan

Transcript of Molecular Spintronics using S-Electron...

Page 1: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

2008.12.18 TU-Dresden

Molecular Spintronics using -Electron Molecules

Masashi ShiraishiMasashi Shiraishi

1. Osaka University, Japan. 2. JST-PRESTO, Japan

Page 2: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Co-workers in this study

Osaka University

Prof. Yoshishige SuzukiProf. Teruya ShinjoDr. Ryo Nouchi (⇒Tohoku Univ.)Dr. Takayuki NozakiDr. Masaki Mizuguchi (⇒Tohoku Univ.)S. Miwa, H. Kusai, S. Tanabe, M. Ohishi, D. Hatanaka

Experimental Assistance

Tohoku Univ. Univ. of TokyoProf. Yoshihiro Iwasa Prof. Masashi TakigawaProf. Taishi Takenobu Dr. Makoto YoshidaDr. Hidekazu Shimotani

Financial Aid

NEDO, Asahi Glass Foundation, 21st COE Program

Page 3: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Research direction of our Osaka Univ. Group

Molecular Spintronics Molecular Electronics

GrapheneFullerenesCarbon nanotubesOrganic Molecules (Rubrene, Alq3, etc)

Materials

Research Field Research Field

Molecular Science Gp. (Shiraishi’s Group) belonging Prof. Y. Suzuki’s Lab.

CNT-FETsGraphene spintronicsOrganic spintronics…..

Page 4: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Contents of my talk

Introduction : Basic concepts of spintronicsPrevious serious problems in molecular spintronics

Part I : Molecular spintronics using molecular nano-compositesAppearance of magnetoresistance (MR) effectsBackground physicsWhat was missing?

Part II : Molecular spintronics using grapheneSpin injection at room temperature“Local” and “Non-local” MR effectsRemaining problems in molecular spintronics

Page 5: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Background of this study

What is expected to molecular spintronicsWhat is expected to molecular spintronics??

Molecules ⇒ Carbon, HydrogenA small spin-orbit interaction ( ~ Z4)Long spin relaxation timeLong spin coherent length ?(If high mobility…)

Applications :for instance,

quantum computation devicesmolecular spin transistors

Molecules ⇒ SemiconductorGate-induced (spin) current control

Page 6: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

EImp

pIm

Spin-orbit interaction ~A relativistic effect~

Dirac Equation (4×4 matrix)

Positive energy solutions (2-component)

Negative energy solutions (2-component)

m : mass term, : Pauli’s spin matrix, p : momentum

Introduction of an electro-magnetic field (to positive energy solution)

.])2(22

[

]22

)([

2

2

BsLmce

mp

eBmce

meAp

tih

   

h

g-value = 2

mpi

i

3

1

.10

01,

00

 i

ii 4×4 matrix

Page 7: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Spin-orbit interaction ~A relativistic effect~

Diagonalization of the Dirac equation by Unitary transformation(Excluding the mixing of positive and negative solutions)

⇒ Foldy=Wouthuysen transformation

divEmepE

merotE

mie

Bmee

mp

meApmH

222

2

42

848

)(2

}82

)({

    

Mass velocity term Electrostatic dipole

Magnetic dipole

Spin-orbit interaction terms Darwin term(Zitterbewegung)

To spherically symmetric potential, the 1st term = 0.The 2nd term is double of that in Classical mechanics (Thomas precession).S-O Hamiltonian is

)(4 3 L

mrZe

H B h ⇒ Z4

Page 8: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Alq3

Co

LSMO

Difficulty in obtaining a clear interface & implementing various characterizations.

Underlying physics “?”

Spins were injected????

Co

Alq3

Correspondence between MR effects and magnetization of FM

Spurious signals (Large Rc)X

In-plane structures Sandwiched structures

How can we reproduce them ?

Molecular spintronics chronicle (1)Serious problems in molecular spintronics

Page 9: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Molecular spintronics chronicle (1)FM FM

Molecule

① Resistance hysteresis & Magnetization Process

Local Hall effect

Magnetic domain wall

⑤ Reliability of a “local” scheme “?”

④ Large noise (Rc)⇒ Spurious signal

B

R : Small R : large

Serious problems in molecular spintronics

B

R

B

Anisotropic MR effect

Page 10: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Molecular spintronics chronicle (1)How to solve or bypass the problems?

MR curves & Magnetization processare characterized in the same sample.

TMR oscillation

Non-local method(excluding spurioussignals)

Page 11: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

PART I : Molecular nano-composite spin devices

Page 12: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Remaining obstacles & our strategy

1. A lack of detailed analyses of magnetization processes(Device structures were not suitable for various characterizations.)

2. Excess contact resistance ( ⇒spurious signals )

3. Uncontrolled interface formations between FM/NM

should be solved for further progressand obtaining reliable results !!

Introducing a novel system, C60-Co nano-composites⇒ bypassing the interface problems

inducing reliable results by various characterizationsH. Zare-Korsaraki and H. Micklitz, 2004

In this study…

Page 13: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Fabrication processes and sample structures

1. Using photo1. Using photo--lithographylithography2. Evaporating Cr and Au electrodes2. Evaporating Cr and Au electrodes3. Lift3. Lift--offoff4. 4. CoevaporationCoevaporation of Cof C6060--Co Co ((1010--66~10~10--7 7 TorrTorr))5. Capping layers 5. Capping layers ((CC6060++SiOSiO))7. Coating by ZEP7. Coating by ZEP--520A520A8. Annealing at 180 8. Annealing at 180 ℃℃, 30 min in vacuum, 30 min in vacuum9. Magnetoresistance (MR) measurements 9. Magnetoresistance (MR) measurements

C60evaporation systems C60 powderCo

4.9 eV

C60

6.2 eV(Shinohara, CPL)HOMO

V.L.

LUMO

~ 1.5 eV(S. Saito PRL)

4.7 eV

Small gap between W.F. of Co and LUMOcomparing with a Alq3 case.

Page 14: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

The MR curve coincides with the magnetization of the Co.

Magnetization of the Co induces the observed MR effect.= Reliable study !

3 nm 2 nm

Introduction of C60-Co nano-composites

S. Miwa, M.S. et al. JJAP 45, L717 (2006).S. Miwa, M.S. et al. PRB76, 214414 (2007).

Page 15: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Structural analyses of the C60-Co nano-composite

1. The Co size:2-3 nm (Fig.1,XRD:2 nm)

2. Distance ~ 1.5-2.2 nm (From XRD)3. No percolation of the Co(Fig.1)

4. Spin dependent transport in C60(Fig.2)

5. No obvious damage to C60(Fig. 3)

Fig. 1 Fig. 2

Fig. 3

1426

14601469

1573

3 nm 2 nm

Page 16: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Temperature dependenceof the MR ratio(= 290 K)

An observation of the MR effect at room temperature

The first observation of an MR effect at RT induced by spin-dependent transport in molecular spin devices !!

Recently,….the MR ratio increased up to 300-500% at 4 K.

Page 17: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

A role of molecules ?

T-1/2 dep. (Hopping transport) ⇒ Coulomb interaction between conducting electrons

Co-Al-O granular filmS. Mitani et al., PRL 1998.

In Co-Al-O system,

Molecules behave as a tunnel barrier ?

Coulomb energy

When T=6.5 K, thenEc=1.48 meV

Number of junctions :300-400

Page 18: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Application for field effect transistors (FETs)S.C. FET = ~40 cm2 V-1 s-1

V. C. Sundar et al., Science 312, 1644 (2004).J. Takeya et al., Appl. Phys. Lett. in press.

Thin film FETS. Seo, et al., Appl. Phys. Lett. 88, 232114 (2006).

Rubrene : C42H28

Rubrene~ 2 nm

Replacement of molecular matrices

Alq3

An electron transport layer of O-LEDTang et al., Appl. Phys. Lett. 51, 913 (1987).An MR effect in sandwiched devicesXiong et al., Nature 2003An intrinsic MR effect (Wohlgenannt et al.)

Page 19: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

① Fabrication of NM electrodes② rubrene/Co co-evap.(10-7~10-6 Torr) rubrene : ~ 0.3 Å /s , 1000 Å

Co : ~ 0.1 Å /s , 350 Å③ Capping layers [SiO (~ 500 nm) + resist]

Volume contentsrubrene:Co = 3 : 1

H

GlassAu/Cr (50 nm)

gap 10 m

4 mm

4 mm 4 mm

Au/Cr (50 nm)

Co

rubrene

SiOrubrene/Co

135 nm

Resist

A device structure using rubrene-Co nano-composite

Page 20: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

7

6

5

4

104

m)

-40 -20 0 20 40H (kOe)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0-(M

/Ms ) 2H

: resistivityMs : sat. mag.

4.2 KVbais = 2 V

MR ratio =min

max - min = 78%

-(M/MS)2

Electrode

Corubrene

7.06.5

10

m

)

-1.0 0.0 1.0H (kOe)

-0.3-0.2-0.10.0

-(M/M

s )

A large MR effect in rubrene-Co nano-composite

Electrode

H. Kusai, M. Shiraishi et al., Chem. Phys. Lett. 448, 106 (2007).

Page 21: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

MR ratio =

Co spin polarization: P = 34% → MR ratio = 12%

C60-Co: MR ratio = 300%Rubrene: MR ratio = 80%

1. Enhancement of the MR ratio by Coulomb blockade ? (S. Mitani et al., PRL81, 2799 (1998).)

2. Enhancement of spin polarization of the Co at the interface ?(C-K. Yang et al., PRL203 (2003).)

Larger than the theoretical predicted value

Possible reasons

P2

The origins of the large MR ratio

1. Yes. Coulomb blockade and co-tunneling are important.2. Yes. (M. Shiraishi et al., APL 93, 53103 (2008). 59Co spin echo)

Importance of surface & interface characterizations !!

Page 22: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Why Coulomb blockade is important?

A spin flip process is needed

Low conductivity !!

Parallel alignment Anti-parallel alignment

Page 23: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

1

0

-1

Cur

rent

[mA

]

-2 -1 0 1 2Bias voltage [mV]

3.2 K 20 K 40 K 80 K

Clear Coulomb blockade

10-9

10-7

10-5

10-3

G0

[1/o

hm]

0.120.100.080.060.040.021/T [1/K]

TkUG

B

exp

U : 12 meVrCo : 1.4 nm

rCo :0.8-2.3 nm (by SQUID)

V=10 mV

dAu-Au=400-500 nm

Zero bias conductance :

NOT breakdown !Spin (Coulomb) blockade !!1.1 V

Page 24: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

1.00.50.0

-0.5-1.0C

urre

nt [m

A]

-2 -1 0 1 2Bias voltage [V]

60

40

20

0

MR

ratio [%]

Current MR ratio

Correspondence between CB and MR

Due to Spin blockade

??? Co-tunneling?Two-step enhancement !!

T=3.2 K

Page 25: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Bias voltage dependence of MR ratio (80 K)

■ The I-V characteristic is linear, thus no CB effect.

■ The MR ratio monotonously decreases with increasing the bias voltage

80 K

-2

-1

0

1

2C

urre

nt [m

A]

-2 -1 0 1 2Bias voltage [V]

0.32

0.28

0.24

0.20

MR

ratio [%] Current

MR ratio

Page 26: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

15 K

-2

-1

0

1

2C

urre

nt [m

A]

-2 -1 0 1 2Bias voltage [V]

6

4

2

0

MR

ratio [%] Current

MR ratio

Bias voltage dependence of MR ratio (15 K)

■ Constant MR ratio in the CB region → Second-order co-tunneling

■ Clear appearance of the MR enhancement by the CB effect

S. Takahashi and S. Maekawa, phys. Rev. Lett. 80, 1758 (1998).

e-e-

Page 27: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Bias voltage dependence of MR ratio (3.2 K)

■ Clearer appearance of the enhancement by the CB effect at the threshold

■Appearance of an additional MR enhancement in the CB region

3.2 K

-2 -1 0 1 2Bias voltage [V]

-2

-1

0

1

2C

urre

nt [m

A] 50

403020100

MR

ratio [%]

Current MR ratio

Page 28: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Log-log plots of I-V characteristics

■ Agreement with the transport property of Co-tunneling (I ∝ V2N-1 , N :the number of junctions)

■ N decreases with increasing temperature.

Dominant transport : High-order Co-tunnelingT. B. Tran et al., Phys. Rev. Lett. 95. 076806 (2005)

10-7

10-5

10-3

10-1

Cur

rent

[mA

]

2 3 4 5 6 7 8 91

2Bias voltage [V]

80 K 40 K 20 K15 K12 K10 K8 K6 K4.2 K3.2 K I V9

I V3

Page 29: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Conclusion 1 (CB & CT)

1. Clear Coulomb blockade (CB) and co-tunneling (CT) were observed.

2. Two-step enhancement of the MR ratio was observed.

3. The CB & the CT contributed to the enhancement of the MR ratio.

D. Hatanaka, M. Shiraishi et al., to be submitted.

Page 30: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

PEN(polyethylene naphthalate) substrate(50 m thickness)

85 mm

90 mm

kapton film mask

5 mm10 mm PEN substrate

glass cap

Sample layer

tetrafluoroethylene film

・Co(~350 nm, 0.1 Å/s) + glass・rubrene(~1050 nm) + glass・rubrene(~1050 nm)-Co(~350 nm) + glass・rubrene(~700 nm)-Co(~350 nm) + glass

PEN substrate:10 mm x 5 mm x 48 pieces

Measured Samples

Spin polarization characterization (NMR spin echo)

Page 31: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Spin polarization characterization (NMR spin echo)

59Co spin echo

Co nano-particles in the nano-composites(Diameter:0.8-2.3 nm)

No signal from rubrene

Temperature: 2 KFrequency:100-320 MHzMagnetic field:0-9 T

Page 32: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

hcp-Co

Spin echo signals (Co thin film & rubrene-Co)

Enhancement of spin polarizationat the Co surface.

~ +10 %

Page 33: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

hcp-Co

Spin echo signals (Magnetic field dependence)

Completely different behavior in comparison with Co thin film !!

Signals become weaker !!

Page 34: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

An interpretation

Important message)Unique behavior under a magnetic field application

=A possible model=①B=0 T

A hyperfine field is fully observed.

②B > 1 TParallel to the applied field,

but random to the crystal axis. ⇒ anisotropy of the hyperfine field

+hcp-Co induced a quadrupole effect

Page 35: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Conclusion 2

1. Enhancement of spin polarization was observed by NMR.

2. The enhancement was estimated to be ~10%.

3. It is not enough to explain all of the enhancement of the MR ratio.

4. The spin structure of molecular spin devices was firstly clarified.

M. Shiraishi et al., Applied Physics Letters 93, 53103 (2008).

Page 36: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

1. The first observation of a spin-dependent MR effect at RT in molecular spin devices.

2. Large MR ratio ( 80%) was observed in rubrene-Co nano-composites.Recently, 300-500%@4 K in a C60-Co system.

3. MR ratio of 12% in Alq3-Co nano-composites.(S. Tanabe, M. Shiraishi et al., APL 91, 63123 (2007).)

4. Background physics becomes clear.

Conclusive remarks in Part I

However, spin injection was not achieved !!・ Molecules are barriers (TMR!)・ Conductance mismatch

Sakai, Takanashi, et al., APL 2006. (C60, 400%@4 K, TMR)Moodera et al., PRL 2007. (Alq3, Rubrene : TMR) Bader et al., PRB 2008. (Alq3 : TMR)

Page 37: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

FM/NM contactSpin-injection

μ↑

Ferromagneticmetal

non-magneticmaterial

J

μ↓

z

μ

μ↑-μ↓

z

Spin accumulation

nmlFM 5~ nmlNM 100 several

FM

NM

rrJJ

JJ

1

Spin-polarization of the injected current

:Spin-asymmetry:interface effectiveresistance

/4/11

FMFM lr2/1

NMNMNM lr

FMNM rrWe cannot inject spin for the case;

A. A. FertFert et al., PRB 2001.et al., PRB 2001.

Page 38: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Molecular nano-composite spin devices

PART II : Spin injection into graphene at room temperature

Page 39: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

How to inject spins into molecules ?

The answer is….

Graphene

Page 40: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

1HOPG

HOPGScotch tape

remove

2

SiO2/++Si

push

3

Thin film Graphene

SiO2/++Si

Fabrication process (Scotch tape peeling)

Page 41: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Graphene (Single- & Multi-layered, Optical microscopic image)

Page 42: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Sample geometry and measurement techniques

Local 2-T & Non-local 4-T DC measurements

Room temperatureNo tunneling barrier

RCo1-Au1 ~ 110

(RCo-wire ~ 50 )

RCo1-Co2 ~ 205

Page 43: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

The basic concept

F.J. Jedema et al., Nature 416, 713 (2002).

spin injector

spin detector

An electric current : anisotropicA spin current : isotropic

Al nanowire: non magnetic

A proof of spin injection into the Al nanowireusing difference of electrochemical potential of spins

A concept of “non-local” measurements

Page 44: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Observation of spin injection signals

Jpn. J. Appl. Phys 46, L605 (2007). (Express Letter)

Clear proof of“spin injection” into graphene !!

0.716

0.717

0.718

0.719

0.720

0.721

-40 -20 0 20 40

V non-

loca

l/I (V

/A)

B (mT)

185.14185.15185.16185.17185.18185.19185.20185.21

R loca

l ()

Local 2-T

Non-local 4-T

Magnetic domain wall

Electric current

×AMR effect

Local 2-T : AMR-induced signals Non-local 4-T : Spin injection signals

⇒ Detection of spin current in graphene at room temperature

Page 45: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Spintronics using graphene2007.06.22 Our paper was published !!Cond-mat) 0706.14511451Multi layer graphene (Graphene Thin Film, GTF) W/O tunneling barrier

2007.07.15Groningen Univ., Nature 448, 571 (2007).Cond-mat) 0706.19481948Single layer graphene WITH tunneling barrier

2007.09.19Univ. of Maryland, APL 91, 123105 (2007).Cond-mat) 0706.15971597Single layer graphene W/O tunneling barrier

The other repotsby M. Nishioka et al. (in APL)by R.K. Kawakami et al. (in PRB) and more…

Page 46: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Inferiority of molecular spintronics (1)

MgO-based TMR : ~1 V (RT)S. Yuasa et al., Nature Mat. 2004.

Vhalf : MR ratio becomes a half of max.The decrease : spin scattering = loss of P

(magnon/phonon…)

SWNT spin valve : ~10 mV (4 K)MR ratio ~ 2 %H.T. Man et al., PRB 2006.

graphene spin valve : ~ 5 mV (2 K)MR ratio ~ 0.4% M. Nishioka et al., APL 2007.

Poor bias voltage dependence

Page 47: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

No accordance between “Local” & “Non-local” results

“local” R~700 “non-local” R~20

N. Tombros, B.J. van Wees et al., PRB 2006.

“…90% of local signalsare not due to spinaccumulation….”

The missing part inmolecular spintronics(Underlying physics cannotbe discussed.)

Inferiority of molecular spintronics (2)

T=4.2 K

2×(Non-local R)=(Local R)

F.J. Jedema et al., PRB 2003.

Page 48: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Tombros, van Wees et al., Nature 2007.

“local” R > 100

“non-local” R~12

Jedema, van Wees et al., PRB 2003.

“non-local” R = 2 m

“local” R = 4 m

Molecule Metal

Inferiority of molecular spintronics (3)

T=5 K

Page 49: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Next milestones

Solving the two important problems in molecular spintronics;

1. Poor bias voltage dependence of spin polarization2. Missing accordance between “local” & “non-local” results

by using our graphene-based spin valves.

The milestone ;

Constructing a steadfast basis of molecular spintronics

Page 50: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Local magnetoresistance at room temperature

M. Shiraishi et al., cond-mat 0810.4592.

Page 51: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Spin precession and spin coherence in “non-local”

Page 52: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

ComparisonComparison

Diffusion constant, D (10-2m2/s)

Spin flip length, m

Spin coherent time, (ps)

Spin polarization, P

120 K RT RT (Dirac point)

0.8 2.1 1.3(P)~2.1(AP)

1.1 1.6 1.3(P)~1.5(AP)

150 120 125(P)~100(AP)

0.16 0.09 0.1

Our study (GTF)Our study (GTF) Tombros et al. (Single layer)

The previous report from our group (2)

Page 53: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Molecular spintronics chronicle (1)Injection current dependence of output signals

Page 54: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

“Non-local” “Local”

Injected current dependence of output voltages is linear.

P is constant !! = Robustness of spin polarization !!

),exp(2

2

sfinject

GTF

sflocalnon

LIA

PV

Robustness of spin polarization (1)

Page 55: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Comparison with that in MgO-TMRP was constant up to 0.5 V, and was still 81% at 1.2 V

Robustness of spin polarization (2)

M. Shiraishi et al., cond-mat 0810.4592.

Page 56: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Molecular spintronics chronicle (1)

Unprecedented robustness…?Suppression of Magnon/Phonon excitation?

2×(Non-local R)=(Local R)

Robustness of spin polarization (3)

Ideal interface formationIdeal interface formation

More important message isMore important message is……..““Theory and experiment firstly Theory and experiment firstly exhibit the good accordanceexhibit the good accordancein molecular spintronics.in molecular spintronics.””

Room temperature !!

We have succeeded in constructing a steadfast basis of molecular spintronics.

Page 57: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Conclusive remarks in Part II (graphene spintronics)

1. Spin injection and spin current detection in graphene(by non-local measurements)

2. Magnetoresistance effect at room temperature(by non-local & local measurements)

3. Estimation of spin transport properties(by Hanle-type spin precession)

1. Reliable results are provided.2. Unprecedented robustness of spin polarization is found.3. A theory and an experiment coordinate well

in molecular spintronics.

Page 58: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Thank you very much for your kind attention !!

Page 59: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

-400 -300 -200 -100 0 100 200 300 400

Magntic Field (Oe)

"Half"

0.22

0.221

0.222

0.223

0.224

0.225

0.226

0.227

0.228

-400 -300 -200 -100 0 100 200 300 400

Magnetic Field (Oe)

"Cross"

Spin injection signals in graphene spin valves (1)

5 V 5 V

800 A 800 A

Page 60: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes
Page 61: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

Spin injection signals in graphene spin valves (2)

Non-local signals in “cross” and “half” alignments.

If both are different…. Ohmic contact

If both coincide…. Schottky contact(T. Kimura et al., JMMM 286, 88 (2005).)

Schottky ? Conductance mismatch ?

Wire resistance : 100 Graphene resistance : 5 Device resistance :200-300

Contact resistance ? : 100

Unintentional contact resistance exists ? Is it NECESSARY or NUISANCE ?

Page 62: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

5.0245.0225.0205.0185.016 1

0-4

m)

-40 0 40H (kOe)

-1.0

-0.5

0.0 -(M/M

s ) 2V = 100 mV

MR比 = ~ 0.1%

Observation of the MR effect at RT.

Drastic decrease of the MR ratio

Sat. mag. does not induce the decrease.

4.2 K → RTSat. mag. decreased only 30%

RT

-(M/MS)2

0.1

1

10

100M

R (%

)

2 410

2 4100

2 4

T (K)

Temperature dependence of the MR ratio

Page 63: Molecular Spintronics using S-Electron Moleculesnano.tu-dresden.de/pubs/slides_others/2008_12_18... · Molecular Spintronics Molecular Electronics Graphene Fullerenes Carbon nanotubes

80

60

40

20

0

Ms (

emu/

g C

o)

3002001000T (K)

MR ratio4.2 K (68%) → RT (0.1%)Sat. mag.4.2 K (74 emu/g Co)

→ RT (54 emu/g Co)

Temperature dependence of the saturation magnetization